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PREFACE

During recent years there has been an ever increaging inferest in modern
algebra not only of students in mathematics but also of those in physics,
chemistry, psychology, economics, and statistics. My Modern Higher Alge-
bra was intended, of course, to serve primarily the first of these groups, and
its rather widespread use has assured me of the propriety of both its con-

- tents and its abstract mode of presentation. This assurance hag been eofi™
firmed by its successful use as a text, the sole prerequisite being the subject
matter of L. E. Dickson’s First Course in the Theory of Equations. However,
I am fully aware of the serious gap in mode of thought between the intuitive
treatment of algebraic theory of the First Course and the rigofous abstract
treatment of the Modern Higher Algebra, as well as the pedagogical difficulty
which is a consequence. QO

The publication recently of more abstract presentations of the theory of
equations gives evidence of attempts to diminish thig)gap. Another such at-
tempt has resulted in & supposedly less abstracp.fléatise on modern algebra
which is about to appear as these pages are beiug' written. [However, I have
the feeling that neither of these comprapidesiedestnabla and that it would
be far better to make the trapsition fromithe intuitive to the abstract by the
addition of & new ecourse in algebralte the undergraduate curriculum in
mathematics—a curriculum whick eontains at most two eourses in algebra
and these only partly algebra.jc:’i}l content.

This book is a text for siich a course. In fact, its only prerequisite ma-
terial is a knowledge of theth part, of the theory of equations given as a chap-
ter of the ordinary text'dn college algebra as well a8 a reasonably complete
knowledge of the thepry of determinants. Thus, it would actually be pos-
sible for a studenf with adcquate mathematical maturity, whose only train-
ing in algebra s ourse in college algebra, to grasp the contents. 1 have used
the text inJ@anuscript form in a class composed of third- and fourth-year
undergradu\ate and beginning graduate students, and they all seemed to find
the maberial casy to understand. I trust that it will find such use elsewhere
and that it will serve also to satisfy the great interest in the theory of matrices
which has been shown me repeatedly by students of the social sciences.

I wish to express my deep appreciation of the fine critical assistance of
Dr. Sam Perlis during the course of publication of this book.

A. A, ALBERT

Umiversrey or CHICAGO
September 9, 1940
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CHAPTER I
POLYNOMIALS

1. Polynomials in x. There are certain sitple algebraie concepts with
which the reader is probably well acquainted but not perhaps in the termi-
nelogy and form desirable for the study of algebraic theories. We sha]l thus
begin onr exposition with a-discussion of these concepts. O\

We shall speak of the familiar operations of addition, sublrachon,”and
multiplicatzon ag the entegral operations. A positive integral power is then
best regarded as the result of a finite repetition of the operatlon of multi-
plication. N

A polynomial f(z) in x is any expression obtained as the result of the ap-
plication of a finite number of integral operations™g = and constants, If
¢(x) is a second such expression and it is possible t’() ‘earry out the operations
indicated in the given formal expressions foPyfe) and g(z) so as to obtain
two identieal expressions, then we ghall regard f(z) and g(z) as being the
same polynomial. This concept is frequehtly indicated by saying that f(z)
and g(z) are identically equal an‘ﬂwb‘fy dpry ]é;'?"f%)%g qlz). However, we
shall usnally say merely that f(z) aid g(z) are egual polynomials and write
flz) = g(z). We ghall desxgnate@y ¢ the polynomial which is the constant
zero and shall call this polynémial the zero polynomial. Thus, in a discus-
gion of polynomials (i) <QKwﬂl mean that f{z) is the zero polynomial.
No confusion will arise f;-om this usage for it wili always be clear from the
context that, in the consideration of a conditional equation f{x) = 0 where
we seek a constanfgelution ¢ such that fi¢) = 0, the polynomial f(z) is not
the zero pol}ﬂw@fiial. We observe that fthe zero polynomial has fhe
properties
AV 0-g@) =0, 0+g() =g

for every polynomial glz).

Qur definition of a polynomial includes the use of the familiar term con-
stant. By this term we shall mean any complex number or function inde-
pendent of z. Later on in our algebraic study we shall be mueh more ex-
plicit about the meaning of this term. For the present, however, we shall
merely make the unprecise agsumption that our constants have the usual
properties postulated in elementary algebra. In particular, we shall assume
the properties that if @ and b are constants such that ab = 0 then either

i



2 INTRODUCTION TO ALGEBRAIC THEORIES

a or b is zero: and if 4 is & nonzero constant then o has a constant inverse
a-! such that aa™! = 1.

If f(z) is the label we assign to a particular formal expression of a poly- .
nomigal and we replace = wherever it occurs in f(z) by a constant ¢, we ob-
tain & corresponding expression in ¢ which is the constant we designate by
f(c). Suppose now that g(z) is any different formai expression of a poly-
nomial in z and that fz) = g(z) in the sense defined above. Then it is
evident that f{c) = g(c). Thus, in particular, if h(x}, g(x), r(z) are poly-
nomials in « such that f(x) = k(z)g(z} + r{z) then fle) = Ale)q(eh 7(c)
for any ¢. For example, we have flz) = 2° — 22% 4 3z, ks s = — 1,
g(z) = 2* — z, r(z) = 2z, and are stating that for any ¢ we' have ¢? —
22 - 8¢ = (¢ — 1){c? — ¢) + 2e. N

If the indicated integral eperations in any given eXpression of a poly-
nomial f{z) be carried out, we may express f(z) as@sum of a finite num-
ber of terms of the form ax®. Here k is 2 non-n€gative integer and a is a
constant called the coefficient of z*. The ter}rl“s\\with the same exponent k
may be combined into a single term whose edefficient is the sum of all their
coeflicients, and we may then write \4

(1) f@) = 4 + eI L 2 - a.-
www,dbrauli}ﬁi'af‘ .org.in

The constants e; are called theigoefficienits of f(x) and may be zero, but

unless f(z) is the zero polynomial, we may always take ao % 0. The ex-

pression (1) of f(z) with €9 0 is most important since, if g(z) is a second

polynomial and we vyr‘tté*g(x) in the corresponding form

(2) ’,\' g(a:) = boxm + blxm——l _j‘_ L + bm

with b, == Q,~.’j}k}3n f(z) and ¢(z} are equal if and only if m = n, a; = b, for
i =0, .:.§%. In other words, we may say that the expression (1) of a
polmaigja.l is unique, that is, two polynomials are equal if and only if their
expressions (1) are identical.
_The integer n of any expression (1) of f(x) is called the virtual degree of
© the expression (1), If ¢ # 0 we call n the degree* of f(z). Thus, cither any
f(z) has a positive integral degree, or f{z) = a, is a constant and will be
called a constant polynomial in z. If, then, ¢, = 0 we say that the con-
stant polynomial f{z) has degree zero. But if a, = 0, so that f(z) is the
zero polynomial, we shall assign to it the degree minus nfinity, This will

* Clearly any polynromial of degree g may be written as an expression of the form (1)

of virtual degree any integer n = n,. We may thus speak of any such # as a virtual de-
gree of f(x).
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be done so as to imply that certain simple theorems on polynomials shall
hold without exeeption.

The coefficient aqin (1) will be called the virtual leading coefficient of this

. expression of f(z) and will be called the leading coefficient of f(z) if and only
if it is not zero. We shall eall f(z) a monic polynomial if g = 1. We then
have the elementary results referred to above, whose almost trivial verifica-
tion we leave to the reader.

Lemma 1. The degree of a product of two polynomials £(x) and g(x) w8 the
sum of the degrees of £(x) and g(x). The leading coefficient of £(x) - p(X) s
the product of the leading coefficients of 1(x} and g(x), and thus, FE&) and
g(x) are monic, so is £(x) -+ g(x). O

Lemma 2. A product of fwo nonzero polynomials is nonzereiand is a con-
stanl 1if and only if both faclors are constants. ) "“ ’

Lemma 3. Let £(x) be nonzero and such that f (x)g®N= t(X)h(x). Then
g(x) = h(x). _ '

Luama 4. The degree of £(x) 4 £(x) s at most ’t{& larger of the two degrees
of 1(x) and g(x). R4

. EXERCISESA WV

1. State the condifion that the degree of #{&) + g(x) be less than the degree of
either f(z) or g(z). www:dbl:aulibral'y_org_in

2. What can one say about the degfee of f(z) + g(x) if f(x) and g(z) have posi-
tive leading coefficients?

8. What can one say about ;hﬁ}legree of 1%, of f3, of f* for f = f(x) a polynomial,

k a positive integer? LA '

4. State a rosult abouf the degree and leading cocflicient of any polynomisl
sy =S+ ...+ s> 1, fi = fi(z) a polynemial in = with real coefficients.
5. Make a corres:bdhdi.ng statement about g(x)s(r) where g(z) has odd degree

and real coeﬁici{n",t}s, 's(z) as in Ex. 4.

6. State‘t}i;a\relation between the term of least degree in f(z)g(c) and those of

least degrépun f(z) and g(z).

7.$tate why it Is true that if # is nof a factor of f{(z) or g{z} then z is not a fac-
tor of f{x)glx).
8. Use Ex. 7 to prove that if % is & positive integer then z is a factor of [fGz)]® if

and only if © Is a factor of f(x).

8. Let f and g be polynomials in « sueh that the following equations are gatisfied
(identically). Show, then, that both f and g are zero. Hint: Verify firgt that other-

* The early exercises in our sets shoukd normally be taken up orally. The author’s
choice of oral exercises will be indicated by the language employed.,
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wise both f and g ave not zero. Express each equation in the form a(x) = b{z) and
pply Ex. 3. In parts (¢} and (d) complete the squares.

@) f*+zg"=0 &) Jt+ Zfr 4 (B — )yt =
b f-2g=10 d) f1+ 2fg —zg? =0
10, Use Ex. 8 to give another proof of (¢}, (8), and (d} of Ex. 9. Hint: Show that
if f and g are nonzero polynomial solutions of these equations of least possible de-
grees, then z divides f = =f, as well as g = zgi. Buf then f; and g1 are also solutions
—a, contradiction, \\
11. Uze Ex. 4 to show that if f, g, and } are polynomials in & with real.csgfﬁcients
satisfying the following equations (identically), then they are all zero N
a) fﬂ — xgﬂ - zhﬂ ""}‘ N
by fPezgt+h=0 ‘ 3
Ot ++ar=0 _L°

12. Find solutions of the equations of Ex. 11 for polynbinials f, g, & with complex
coefficients and not sll zero. IRV

2. The division algorithm., The result pf‘t]?a application of the process
ordinarily called long division to polyr;q:flidls is a theorem which we shall
call the Division Algorithm for polynomisls and shall state as

Theorem 1. Leti(x)qnd gix)be B?%WS?E%? of respective degrees n and m,
g(x) # 0. Then there exist unigespolynomials q(x) and r{x) such that r(x)
has virfual degreem — 1, q(})’\’is either zero or has degree n — m, and

®) &) = a@r) + 1.

For let f(z) and gi@yhe defined respectively by (1) and (2) with by # 0.
Then, either n <(?45nd we have (3) with ¢(z) = 0, r(z) = f(z), orae # 0,
nzm e k‘is\"aié virtual leading coefficient of a polynomial h(x) of virtual
degree m 7> m, 8 virtual degree of hix) — bilexbg(x) is m + & — 1.
Thus a yirtual degree of f(x) — b'a@™"g(z) is » — 1, and a finite repetition
of f{hisgprbcess yields a polynomial r(z) = f(x) — b5 aex™™ + . . Jg{z) of
vi{tj;t?i degree m — 1, and henee (3) for ¢(z) of degree n — m and leading
coeflicient aghy® # 0. If also f{z) = ¢,{2)g(x) + ry(z) for 74(z) of virtual
degree m — 1, then a virtual degree of s(z) = ro(2) — r(x) is m — 1. Bui
Lemma 1 states that if £(z) = g(x) — golz) < 0 the degree of s(z) =
t(z)g(z) is the sum of m and the degree of {(x). 'This is impossible; and
te) =0, ¢(z) = qle), r(2) = ro(x).

The Remainder Theorem of Algebra states that if we use the Division
Algorithm to write

J@) = q@)(@ — ) + r(2),



POLYNOMIALS 5

80 that ¢(x) =  — ¢ has degree one and r = (z) is necessarily & constant,
then r = f(c). The obvious proof of this result is the use of the remark in
the fifth paragraph of Section 1 to obtain f(c) = ¢(c)(¢ — ¢) + 7, f(e) = »
as desired. It is for this application that we made the remark.

The Division Algorithm and Remainder Theorem imply the Factor Theorem
—a result obtained and used frequently in the study of polynomial equa-
tions. We shall leave the statements of that theorem, and the subsequent
definitions and theorems on the roots and corresponding factorizations c{
polynomials* with real or complex coeficients, to the reader.

*If f(x) is & polynomial in = and ¢ is a constant such that Jie) = 0 then yvg‘sﬁall
call ¢ a root not only of the equation f(z) = 0 but also of the polynomial fiz)a N\,

EXERCIZES N

1. Show by formal differentiation that if ¢ is a root of multi;ﬁipify m of f(x) =
{& — €)"g(z) then ¢ is a root of multiplicity m — 1 of the defiyative j'(z) of f(z).
What then is a necessary and sufficient condition that ki (x)\have multiple roots?

2. Let ¢ be a root of a polynomial f(x) of degree n ?’d\ordinary mtegral coefb-
cients. Use the Division Algorithm to show that ang"polynomial k{c) with rational
coefficients may be expressed in the form &, +beF ... + bpye™? for rational
numbers by, . . ., by, Hint: Write &(z) = g@)flc) + r(z) and replace z by c.

3. Letfla) = 2 + 322 + 4 in Ex. 2. %ﬁggﬁbﬂ% bq%rggﬂpndmg b; for each of
the polynomials 2\

a) ¢ 4 10cf + 25¢* {0 €) ¢ — 2ctt 2
b et 4 4et + ﬁcgik“lp’—i- 1 d) (2¢* + 3}{e® + 3o

3. Polynomial divisibility. Let f(z) and g(z) > 0 be polynomials. Then
by the statement that'glK) divides 1(x) we mean that there exists a poly-
nomial g(z) such thatf(x) = g(x)g(z). Thus, g(x) > 0 divides f(z) if and
only if the polyﬁgimial r(x) of (3) is the zero polynomial, and we shall say
in this case that.f(x) has g{(x) as a factor, g(x) is a factor of f(x).

We shall e;ga-}i'two nonzere polynomials f(x) and g(x} associated polynomials
if f(z) divides g(c) and g(zr) divides f(z). Then f(x) = q(z)g(z), gz) =
h(z)f(x), S0 that f(z) = ¢(z)h(z)f(z). Applying Lemmas 3 and 2, we have
g{x)h(z) = 1, g(z) and k(z) are nonzero constants. Thus f(x) and g(x) are
associaled if and only if each is a nonzero constant muliiple of the other.

It is elear that every nonzero polynomial is associated with a monie poly-
nomial. Observe thus that the familiar process of dividing out the leading
coeflicient in a conditional equation f(z) = 0 iz that used to replace this
equation by the equation g(z) = 0 where g(z) is the monic polynomial
associated with f(x).
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Two associated monic polynomials are equal. We see from this that if
g(z) divides f{x) every polynomial associated with g(z) divides f(z) and
that one possible way to distinguish a member of the set of all associates
of g(z) is to assume the associate to be monic. We shall use this property
ater when we discuss the existence of a unigue greatest cormmon divisor
. {abbreviated, g.c.d.} of polynomials in z.

In our discussion of the g.¢.d. of polynomials we shall chtain a property
which may best be deseribed in terms of the concept of rational fungtion.
It will thus be desirable to arrange our exposition so as to precede thé\study
of greatest common divigors by a discussion of the elements of théthcory of
polynomials and rational funetions of several variables, and w¢ shall do so.

ol
N

EXERCISES P\
1. Let f = f{z) be s polynomial in = and define m(f) = ~ml”f(’_l /x) for every posi-
tive infeger m. Show that m(f) is a polynomial in » of virdual degree m if and only
if m is & virtual degree of f(z). \\
2. Bhow that m(0) = 0, mpm()} = f. A\

8. Definef = 0iff = 0,and = n(f) if {is &xly Nonzero polynomial of degree 7.
Show that m(f) = s for every m > = and\that, if f # 0, = is not a factor of /.

4. Let g be a factor of f. Prove that iz factor of m{f) for every m which is at
least, the degree of . www.dbl‘au!ft}‘rjary,org,m

4. Pelynomials in sever Yariables. Some of our results on polynomials
in 2 may be extended easi\}'y ‘to polynomials in severa) variables, We define
a polynomial f = flz), N, .°, z,) in 2y, . . . , o to be any expression obtained
a8 the result of a.figite’ number of integral operations on zy, . . ., ¥, and
constants. As ip Beetion 1 we may express f{z, . . ., z,) as the sum of a
finite number oltterms of the form
4 \ \ _ axfiak | gk,

- q

&

AN
We\”eaéu'a the coeffictent of the term (4) and define the wirfual degree in
T, ., 2o 0f such a term to be &y + . . . + kg, the virtual degree of a par-
ticular expression of f a5 a sum of terms of the form {4) to be the largest of
the virtual degrees of its terms (4). If two terms of f have the same et of
exponents ks, . . ., kg, we may combine them by adding their coeflicienis
and thus write f as the unique sum, that is, the sum with unique coefficients,

(5) F=fan.. o= D ey gh.. . gk
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Here the coefficients ay, . . . &, are constants and =; is' the degree of f(zy,

t,) considered as a polynomial in z; alone. Also f is the zero poly-
nomial if and only if all its coefficients are zero. If f is a nongero poly-
nomial, then some ay, . . . 3, # 0, and the degree of f is defined to be the
maximum som ky + ... - kg for @, . .. &, # 0. As before we assign the
degree minus infinity to the zero polynomial and have the property that
nonzero constan{ polynomials have degree zero. Note now that a poly-
nomial may have several different terms of the same degree and that eon<
sequently the usual definition of leading term and coefficient do not applgh
However, some of the most important simple properties of polynemials, in
z hold also for polynomials in several z;, and we shall proceed te* their
derivation.

We observe that a polynomial fin zy, ..., 2, may be régarded as a
polynomial (1) of degree n = n,in x = z, with its coefficients.dy, . . . , a, all
polynomials in zy, . . . , 2,1 and a, not zero. If, similaxrly, ¢ be given by
(2) with be not zero, then a virtual degree in 2, of fgigwl + 7, and a virtual
leading coefficient of fg is awbo. If ¢ = 2, then gg &nid &a are nonzero poly-
nomials in m and aehy 7 0 by Lemma 2. Thin\we have proved that the
product fg of two nonzero polynomials f and ¢in z,, z. is not zero. If we

prove similarly that the product of iwo notizero polynomialsin ay, . . ., 2,4
is not zero, we apply the proof @Wg mgbgaup}acbg # 0 and hence have
proved that the product fg of two ponzero polynomials in «y, . . . , 2, is not
zero. We have thus completed thesproof of

Theorem 2. The product of\‘a.ﬁy two nonzere polynomials in xq, ..., Xq
28 not zero, \ o\ .

We have the immediate.€onsequence

Theorem 3. Let f,@yH be polynomials in %1, . . . , ¥q and f be nonzero,

fg =fh. Theng = h\

To continue 0‘&[ discussion we shall need to consider an important special
type of polyno‘xmal Thus we shall call fiz,, . . ., =) a homogeneous poly-
nomial ory a,fo*rm int &, ..., % if all terms of (5) have the same degree
k=& .+ k.. Then, if f is given by (5) and we replace =, in (5) by
Y, we sée that each power product zk . . . zke is replaced by y*+ - - - trazh

. #¥7and thus that the polynomial f{yx,, . . ., y2o) = ¥*f(24, . . . , 24) identi-
cally in 4, 1, . . ., 2. if and only if f{zy, . .., 2g) s a form of degree &
inxl,...,xg. :

The product of two forms f and g of respective degrees n and m in the
same i, . . ., &g is clearly a form of degree m -+ » and, by Theorem 2, is
nonzeroe if and only if f and ¢ are nonzero. We now use this result to obtain
the second of the properties we desire. 1t is a generalization of Lemma 1,
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Observe first that all the terms of the same degree in & nonzere poly-
nomial (5) may be grouped together into a form of this degree and then
we may express (5) uniquely as the sum

{6} f=f(x11---!$q)=f0+---+fn)

where fo is a nonzero form of the same degree n as the polynomial f and f; is
a form of degree n — 4. If also

Q.
(7) g= 0., 5) =gt ot g, \
(NN
for forms g; of degree m — ¢ and such that go 5 0, then clea{ly )
(8) fg=hot ...+ bmin,

where the A; are forms of degree m + n — ¢ and ;g =}DQ‘0 By Theorem 2
ko = 0. Thus if we call f, the leading form of f, x(e‘clearly have

Theorem 4, Let f and g be polynomials in/Zy". . . , %Xq. Then the degree
_ of ig 15 the sum of the degrees of { and g and tfteNeadfing form of fg is the prod-
uct of the leading forms of f and g. . O

The result above is evidently fundgmental for the study of polynomials

in several variables—a sﬁu% whichwe shall discuss only briefly in these
pages W raul.robrary.org.m

b. Rational functions. ‘Flie integral operations together with the opera-
tion of division by a rghzero quantity form a set of what are called the
rational operations. Arafional function of 2y, . . . , 7, is now defined to be
any function obtaifiéd as the result of a finite number of rational operations
on 1y, ..., z,ard constants. The postulates of clementary algebra were
seen by the reader in his earliest algebraic study to imply that every rational
function.g 1 .., Tg Ay be expressed as a quotient

e ) ) -~ M
(9}\; - f= b(zy, ..., 3"

for polynomials a(z,, . . ., z,) and b(zy, ..., z,) > 0. The eoefficients of
a(zy, ..., x,) and blzy, . . ., z,) are then called cogfficients of f. Let us ob-
serve then that the set of all rational functions in zy, . ... , z, with complex
coefficients has a property which we describe by saying that the sct is
closed with respect to rational operations. By this we mean that every rational
function of the elements in this set is in the set. This may be seen to be
due to the definitions a/b 4+ ¢/d = (ad + be),/bd, (a/b) - (¢/d) = (ac)/(bd).
Here b and d are necessarily not zero, and we may use Theorem 2 to obtain
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bd # 0. Observe, then, that the set of rational funetions satisfies the prop-
erties we assumed in Section 1 for our constants, that is, fg = 0if and only
if f = 0 or g = 0, while if /> 0 then f~? exists such that f-f~ = 1.

6. A greatest common divisor process. The existence of a g.e.d. of two
polynomials and the method of its computation are essential in the study
of what are called Sturm’s funetions and so are well known to the reader
who has studied the Theory of Equations. We shall repeat this material here
because of its importance for algebraic theories. Q)

We define the g.c.d. of polynomials fi(z), . . . , fi{z) not all zero fe ke any
monie polynomial A(x) which divides all the £,(x), and is such that zf (%) di-
wides every £y(x) then g(x) divides d(x). If dol(z) iz a second such polynom131
then d{x) and do(z) divide cach other, d(x} and do(z) are asspeigied monic
polynomials and are equal. Hence, according to our deﬁ\mtmn, the g.c.d.
of filx), . . ., fi{z) is a unique polynomial.

If g(z) divides all the fi(z), then g{z) divides d(x% and hence the degree
of diz) is at least that of g(z}. Thus the g.c.d. d{&)’is a common divisor
of the fi(x) of largest possible degree and is clesaﬂy the unique monic com-
mon divisor of this degree.

I di{z) is the g.o.d. of filx), . . ., filz), and dn(.‘.’C) is the g.c.d. of 24z} and
fii(z), then dolz) is the g.e.d. qj\f,,v(;@brauhbf@:a}-.gl%r every common
divisor k(x) of filz), . .., fin(®) dxwdes filz), ..., fi{x), and hence both
di{x) and fia(x), k(z) divides dgte). Moreover, do(x) divides fz.(x) and
the divisor d;(z) of fi(z}, . . . #¥(&), do(z) divides fi(z), . . . , fral®).

The result above evidently reduces the problems of the existence and
construetion of a g.e.d. pfany number of polynomials in » not all zero o
the case of two nonzerg’polynomials. We shall now study this latter prob-
lem and state the pesult we shall prove as

Theorem 5. Feff(x) and g(x) be polynomials not both zero. Then there
extst polyno'm@‘&h ‘a(x) and b{x) such that

10 d®) = ax)}{(x) + bx)s(x)
is @ movie common diviser of £(x) and g(x). Moreover, d(x) is then the unique
g.e.d. of £(x) and g(x).

For if f(z) = 0, then d(z) is associated with g(z), a(z) = 1and b(z) = b*
is a solution of (10) if g(x) is given by (2). Hence, there isno loss of generality
if we assume that both f{(x) and g(z) are nonzero and that the degree of
g(z) is not greater than the degree of f(x). For consistency of notation
we put

(11) ko(x) = f(-'v") » hl(x) = g(x) .
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By Theorem 1
(12) ho() = qu(@)hu() + Pale) ,

where the degree of hs(z) is less than the degree of hi(x). H ha(z) # 0, we
may apply Theorem 1 to obtain

(13) (@) = @(@)ha(z) + hal2) ,

where the degree of hs(z) is less than that of he(z). Thus our divisiongrocess
yields a sequence of equations of the form

N
2 AN
"\ *

(14) hie(z) = gia(@hsa(z) + hi(@) , \ \

where if n; is the degree of h;(z) thenny > na > . . ., zv;hilé n; = 0 unless

hi(z) = 0. We conclude that our sequence must terr@inate with

(15) he_a{z) = Q'r—l(z)hr—-l(z)' —l—Qb,,(x)
L&
-and _ P \4
(16) W) 70,  BSE) = k(@)
www.dbraulibegty org.in
forr = 1. Ny

Equation (16) implies &hat (15} may be replaced by k,_s(z) =
[gr1(2)g-(@) + 11h.(x). THOE h.(z) divides both h,_s(z) and h.s(z). I we
assume that h.(z) divides hi(xr) and hia{x), then (14) implies that h.(z)
divides h; »(zx). Ap{éyident proof by inducticn shows that h.(z) divides
both he(x) = j}\ahd Ay(x) = g(z).

Equation"(&implies that ke{x) = as(z)f{z) + bulz)g(z) with ax(z) = 1,
ba(t) = \Q‘l..tﬁ)- Clearly also 2, (x) = m{z)f{z} + bilz)g{x) with ai(x) = 0,
iz) =N I, now, his(z) = aia(@)f(z) + b; o(x)g(z) and hiafz) =
aiﬂ(x}:{(m) + bea(@)glz) then (14) implies that hi(x) = [a;2{z) —
%’—}(ﬂ%-ﬂﬂ]f () + Pisla) ~ gia(®bialn)lglx) = ale}f (@) + bil2)gl).

s we obtain k.(x) = a.(z)f(x) + b.(z)g(x). The polynomial k.(z) is &
common divisor of f(x) and g{z)} and is associated with a monic common
divisor d(z) = ch.(z). Then d(z) has the form (10) for a(z) = ca.{z), b(z) =
¢br(2). We have already stiown that d(z} is unique.

The prooess used above was first discovered by Euclid, who utilized it in
his geometric formulation of the analogous result on the g.c.d. of integers.
‘It is therefore usually called Euclid's process, We observe that it not only
enables us to prove the existence of d(x) but gives us a finite process by
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mesans of which d(z) may be computed, Notice finally that d(z) is computed
by a repetition of the Division Algorithm on f(z), g(z) and polynomials se-
eured from f(z) and g(z) as remainders in the application of the Division
Algorithm. But this implies the result we state as

Theorem 6. The polynomials a(x), b(x), and hence the grealest common
divisor d(x} of Theorem 5 all have coefficienis which are rational funclions
with rational number coefficients of the coefficients of {(x) and g(x).

We thus have the )

CoRroLLARY. Let the coefficients of £(x) and g(x) be rational numbers. Theh >
the coefficients of their g.c.d. are rattonal numbers. \

1If the only common divisors of f(z) and g(z) are constants, then d (3;) = 1
and we shall eall f{x) and g{z) relafively prime polynomials. Weshsll also
indicate this at times by saying that f(z) is prime to g(z) and heénce also
that g{z) is prime to f(z). When f{z) and g(z} are relatwely\prlme we use
(10) %o obtain polynomials a{x) and b{z) such that )
) w@f@) + glap(e) = 1.
It iz inferesting to observe that the po]ynomials‘afx) and b(x} in {17) are
not unigue and that it is possible to define ) certain unique pair and then
determine all others in terms of this s paiy, o »'Eo [LI ;;Ibmofve first prove the

Levma 5. Let i{(x), g(x), and h(x) 63 ﬁonzem polyn%mmls such that £(x)
is prime to g(x) and divides g(x)h(x) Phen £ (x) divides h{x).

For we may write g{z}h(x) f(‘.s;)q(x) and use {17) to obtain [a(z)f(z) +
HEN @) = (a()ite) + W) = o) us dosired.

‘We now obtain

Theorem 7. Let £(x) of)degree n and g(x) of degree m be relatively prime.
Then there exist um‘gu (pplynomials as(x) of degree af most m — 1 and bolx)
of degree at most n<41 such that ao(x)f(x) + bu(x)g(x) = 1. Every pair of
polynomials a(x}%ﬂd b(x) satisfying (17) has the form

18)  ald) = 2@ + o®g(x),  blx) = bo(x) — e

for a po%émial e(x).
For, if a{x) is any solution of (17), we apply Theorem 1 to obtain the

firgt equation of (18) with (%) the remainder on division of a(z) by g(x).
Then a¢(z) has degree at most m — 1, a(@)f(z) -+ blz)gle) = au(z)f(z) +
[b{z) + e@)f(@)]glz) = 1. We define bo(z) = blx) ++ c(2)f{x) and sec thap
be (£)g(z) = —ao(x)f(x) + 1 has degree at most m + n — 1. By Lemma 1
the degree of by(x) is at most n — 1, ao(z}f(x) + belz)g(z) = 1 as desired.
If now ay(x) has virtual degree m — 1, bi(z) virtual degree n — 1 and
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a(@)f@) + bi@)gl) = al@)f@) + bo(z)g(x), then f(z) clearly divides
[Bo(z) — balz)lg(x). By Leruma 5 the polynomial bo(z) — bi(z) of virtual
degree n — 1 i3 divisible by f{z) of degree n and must be zero. Hence,
bo(x) = bi(z), so that a(z)f(z) = as(=)f@), a;{z) = ao(z). Thisproves aofz)
and bo(z) unique. But the definition above of a¢{x) as the remainder on
division of a(z) by g(«) shows that then (18) holds.

There is also a result which is somewhat analogous to Theorem 7 for the
cage where f(z) and g(x) are not relatively prime, We state it as

Theorem 8. Let f(x) = 0 and g{x) # 0 have respective degrees n ghd m.
Then polynomials a(x) # 0 of degree ol most m — 1 and b(x) # Dol degree
ot most n — 1 such that AN

(19) a(x)f(x) + bx)gk) =0

N

exist if and only if £(x) and g(x) are not relatively prim.é,*’

For if the g.e.d. of f(z) and g(z) is a nonconstant’polynomial d{x), we
have f(z) = f(z)d(x), g(@) = ne)d(@), plo)fEhd [—filz)g{z)] = O where
gi(z) has degree less than m and fi(x) has degree less than 7, Conversely,

let (19) hold. If f(z) and g(z) are rela,t;w@ly prime, we have a.(z)f(x) +
bo()g(@) = 1, a(@) = alz)alz)f(@) 4 o@)b()gz) = g(x)la(x)bo(z) —
aq(x)b(z)]. But then vg(a:) Sﬁ degree gnidivides a{x) # O of degree at most
m — 1 which s impossibl. U LI Y Or&-in

(\EXERCISES .
1. Extend Theorems 5, ﬁ,:}i\nd the corollary to a set of polynomials fi(x), . . . 4
Fel). \\
' 2. Let fiz), . . . ,f4%#) be all polynomials of the first degree. State their pos-
sible g.c.d.’s and th¢‘@énditions on the fi(z) for each such possible g.c.d.

3. Btate phg‘}e"sults corresponding to those above for polynomials of virtual
degree twos\/

4, Brb}fe that the g.c.d. of f(z) and g(z) is the monie polynomial of least possible

dgggeq’of the form (10). Hint: Show that if d(z} is this polynomial then flx) =

G@)E) + 1), r(z) has the form (10) a8 well as degree less than that of d(z) and
s0"must be zero.

5.. A polynomial f(x) is called rationally irreducible if f(z) has rational coefficients
and is not the product of two nonconstant polynomials with rational coefficients.
What are the possible g.c.d.’s of a set of rationally irreducible f;(x) of Ex. 17

6. Let f'(::) = 0 !_oe rationally irreducible, g{z) have rational coefficients. Show
that f(z) either divides g(x) or is prime to g{x}. Thus, f(z) is prime to g(z) if the
degree of g(z) is less than that of f{x).
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7. Use Ex. 1 of SBection 2 together with the results above to show that a rational-
Iy irreducible polynomial has no multiple roots.

8. Find the g.c.d. of each of the following sets of polynomials as well as of all
possible pairs of polynomials in each case:

o) =205 — 2 — 29° — 6z + 4 e) ii=a+ 22* — 2% — Bz — 6z — 3
=xt-bagt—gt~ 2 — 2 fe=ad+ 22+ 3x+3
b)f1=3$4+8$2—‘3 f3=$4+$3—$—1
fi=23+ 22+ 3z 4+ 6 h=e422—32—-6 )
o) fr=at— 200 — 200 — 2 — 3 =24z —2 \
=i+ 67+ 11z + 6 =zt 288+z+2 A
fimat— 8 — Sz +6 A\
d) i=23 4+ 42 2~ 6 N
f2="——“$2—3$+2 N

fo=a—Bed 32— 4o — 4 .\\~

9. Let f(x} be a rationally irreducible polynomial and)e i)e:a complex root of
Flx} = 0. Show that, if g(z} iz a polynomial in ¢ with ratw\hal coeflicients and gfe} #
0, there then exists a polynomial A{x) of degree less\than that of fiz) and with
rational coefficients such that g{c}h{c) = L. P

10. Let f(x) be a rafionally irreducible qua,dratm polynomial and ¢ be a complex

root of f(z) = 0. Show that every r@wldglm%gﬁf(ﬁcgl}nmtmml coefficients
is uniquely expressible in the form @ + bc Wwith @ and b rational numbers,

11. Let £, .. ., fe be polynomialg’in - of virtual degree nand fi # 0. Use Ex. 4
of Bection 8 to show that if d(x) 1§th\e ged.off,..., fithentheged. offy, ..., f:
iz d. Thus, show that the g. cx{\of n(f1), ..., n(f;) has the form z*d for an integer
k=0,

7. Forms. A poly igmial of degree n is frequently spoken of as an n-ic
polynomial. Thereader is already familiar with the terms linear, quadratic,
cubic, quartic Qxdguintic polynomial in the respective casesn = 1,2, 3,4, 5.

In a sn:m}ar faghion a polynomial in z, . . ., 2, ig called a g-ary poly-
nomial, &S bove, we specialize the terminology in the cases g=1,2 3,
4,5 ﬁskﬁe" unary, binary, ternary, quaternary, and guinary.

The terminology just described is used much more frequently in connee-
tion with theorems on forms than in the study of arbitrary polynomials,
In particular, we shall find that our principal interest is in n-ary quadratic
forms.

There are certain special forms which are quadratic in a set of variables
Ti, .« -« 3 Tmy Y1y - -+ 5 s a0d which have gpecial importance because they
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are linear in both =y, ..., Zx and ¥y, . . ., Yn, separately. We ghall eall
such forms bilinear forms. They may be expressed as forms

.....

(20) 2 xtﬂuy: ’

=10,

50 that we may thus write

r id p
(21) f= Dy, o= z:c.ra.rf, \
i=1 i=1 O\
and see that f may be regarded as a linear formin g, .. ., yﬂlﬁ}hoée coeffi-
cients are linear forms in 21, . . . , Tm. EN

A Dbilinear form [ is called symmetric if it is unaltered by the interchange
of correspondingly labeled members of its two sets oft V}rlables This state-
-ment clearly has meaning only if m = n; and f is'symmetric if and only if
C f = Zragy; = Zuagx; But f = Zy.00, and,x ‘&me f is symmetric if and
only if m = n,

22) Cif

% X
NN

=& Gj=1...,m).

A quadraiic form f wwdd:hjtéylﬁ:ﬂtmafgtmms of the type a;x} as well as
the type cixix; for ¢ = j. We mmy write 0y = g, @i = @ — ey fori # j
and have cgrir; = @rax; + {snx i, 80 that
O n
(23) \ \ f = z T4
fi=1
:‘:\' (a£j=aﬁ;i,j=1,---;n)-
.’\n .

‘We compare/this with (22) and coneclude that a quadratic form may be re-
garded agAheTesult of replacing the variables 1, . . . , ya in a symmetric
bilinear: fg)rm DT, ;%8004 ¥y, ..., Y DY T3, ..., Tn, Tespeotively.
Latef” wé shall obtain a theory of equivalence of quadratic forms and shail
uSe the result just derived to obtain a parallel theory of symmetric bilinear
forms.

A final type of form of considerable interest is the skew bilinear form.

Here again m = %, and we eall a bilinear form f skew if f = f(zy, . . . , Zn;
Yoo ¥n) = =S, ..o, Yus %, . . ., Zu). Thus skew bilinear forms are
forms of the type

ki
(24) f= Zx.ﬂiiy:‘,

Li=1
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where

(25) @i; = —aij (1,,3‘ = 1, ey n) .
It follows that @y + @4; = 0, that is

(26) @i =0 G=1,...,n).
Hence f is a sum of terms ai{zay; — zqn) for i 564, ¢ =1,...,n— 1,
J=2,...,n Itis also evident that if we replace the y; by corresponding
z; then the new quadratie form f{zy, . . ., 2. 2, . . . , 2,) is the zero pol}-

nomial. It is important for the reader to observe thus that while (22), may
be associated with both quadratic and symmetric bilinear fonns\we must
associate (25) only with skew bilinear forms,

P
S 3

ORAL EXERCISES " \
1. Use the languspe above ta describe the following forms: 3
a} #* + 3ay* + 2 D2+ 2o
b) =z 44 '\&‘)\ TiYe — Tath
C) 2&?1?}1 - 2oy - ala N

Q"

2. Express the following quadraiuc forms a§ sums of the kind given by (23):

8. Linear forms. A linear fO{rn is expressib]e a8 o 8uI
(27) f\—x’iafxl + .+ 2z

We shall call (27) a luzar combination of zi, . . . , z, with coefficients
@i, - . . , 6is. The conedpt of linear combination has already been used with-
out the name in s]e\reral instances. Thus any polynomial in x is a linear
combination 0&& finite number of non-negative integral powers of z with
constant coeﬂ%wnts, a polynomisl in i, ... ; 2, is a linear combination
of a finite 'nu’mber of power products zfi . . . zf« with constant coefficients,
the é‘&: ~0f f(z} and g{z) is a linear combmation (10} of f(z) and g{x) with
poly%l}mials in x as coefficients.

The form (27) with ¢y = @z = ... = @, = { is the zero form. If ¢ is
a second form,
(28) _ g =bxi+ ...+ buxa,

with congtant coefficients by, . . . , b, We see that

(29) fHg="la+b)e+ ...+ (6 + ba)oa.
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Also if ¢ is any eonstant, we have

(30) of = (ea)zs + . . . + (caa)n -

We define —f to be the form such that f + {(—f) = 0 and see that
(31) —f= -l f=(—a)nt...+ (0.

Then § = ¢ if and only if f — g = f + (—¢) = 0, that is a: = b (i\: 1,

R

T]"Je properties just set down are only trivial consequences of the usual
properties of polynomials and, as such, may seem to be relatively unimpor-
tant. They may be formulated abstractly, however, as p;'pfa’erties of se-
quences of constants (which may be thought of, if we so de$ir6; as the coeffi-
cients of linear forms) and in this formulation in Chapter IV will be very
important for a1l algebraie theory. The reader is already familiar with these
properties which he has used in the computatiop\&f;dcterminants by opera-

tions on its rows and columns. R
Let, then, u be a sequence PN
(32) u = (G1,,r..’.::: N a,‘)

www.dbraulgbf';i‘; .org.in .
of % constanis a; called the elements of the sequence u. If a is any constant,
we define
S\

3

(33) Q{ = ya = (am, ..., ag,)
and cal! au the scal{{a' wroduct of u by a. We now consider a second sequence,
(34) 7 o= {bis...; b,
'S M

and deﬁqe’ﬁé sum of # and ¢ by
35" uto="{(aFby...,0 + ba).

3
Then the linear combination

(36) au + by = (aay + bby, . . ., ada + bb,)

has been uniquely defined for all constants ¢ and b and all sequences
% and . '

The sequence all of whose elemenis are zero will be called the zero
sequence and designated by 0.. It is clearly the unique sequence z with the
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property that « -+ 2z = u for every sequence u. Evidently if a is the zero
eonstant au = 0 for every w.

We define the negative —u of a sequence u to be the sequence » such
that « +- ¢ = 0. Evidently, then, —u is the unique sequence

(37) —u=—1leu=(—ay..., —Q),

and we see that the unigue solution of the equation u + z = » is the ze-
quence v + (—u). We evidently eall this sequence ~
(38) p—u=1(bh —ay,...,bhL—a,). O\
A
The reader should observe now that the definitions and propeljtfes\ derived
for linear combinations of sequences are precisely those whi¢hhold for the
sequences of cocfficients of corresponding linear comb'Qa'tions of linear
forms and that the usual laws of algebra for additiof{and multiplication
hold for addition of sequences and multiplication of sequiences by constants.
INY

9, Equivalence of forms. If f = fl21, . . ., xg} {5 a form of degree # in
Ty, - . ., 2 and we Teplace cvery z; in f by a&ortesponding linear form

(39) T = aﬂylﬁhfﬁ*ﬁi:#éuﬁ'ﬁ#‘%l'y,org.in@ =1...,9,

we obtain a form g = gy, . . . ,“gf,-j)fbf the same degree n in yi, . . ., y».
Then we shall say that f is carQad into g (or that g is obtained from f) by
the linear mapping (39). If\ {i:—a r and the determinant

.."' aGn Tz ... g
(40) N
'\.. Gy Og2 ... Gy
:n\.:'
is not zero, ,ﬁf&\ﬁall say that (39) is nonsingular. In this case it is easily
secn that we'may solve (39) fory, . . . , yoaslinear formsinz,, . . ., z,and

obtainuagl;i\néar mapping which we may call the inverse of {(39). This termi-
nolog‘yg is justified by the fact that the equation f(xi, ...,z = gy,

., ¥,) is an identity, and thus if we replace y, . . ., ¥ in gy, . . ., ¥o)
by the corresponding linear forms in zy, . . . , 2, we obtain the original form
flay, ..., xy).

‘We now congider two forms f = f(zy, ..., & and g = glzy, ..., 24 of
the same degree n. Then we shall say that f is equivalent to g if f is carried
into g, . . . , ¥o) by a nonsingular linear mapping. The statements above
imply that if f is equivalent to g then g is also equivalent to f. Thus, we
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shall usually say simply that f and g are egutvalent, We shall not study the
equivalence of forms of arbitrary degree but only of the special kinds of
forms described in Section 7, and even of those forms only under restricted
types of linear mappings.

‘We have now obtained the background needed for a clear understanding
of matrix theory and shall proceed to ifs development.

EXFERCISES
1. The linear mapping (39) of the form z; = y:for i = 1, . . ., g i called the
identical mapping. What is its effect on any form ¢ \ ¢

2. Apply a nongingular linear mapplng to carry each of the followi mg forms to an
expression of the type i + et Hint: Write f = @(n + cxg)” . by com-
pleting the square on the term in #{ and put 2, + ex; = ‘y1, xg Ve

a) 2ut — 4dmyzy -+ 3k d) 2z f}lxg
8 2+ Wz + 928 € 3NN 2uxy — 2}
o) 3at + 18w, + 2} A

3. Find the inverses of the following lineap msh);\)mgs

a) {29:1+ T2 = Y o\ I b) { @+ 2=

325 4 219 = N -2 By =
b gdb]'y;u]]bkﬂ]‘y org.in ot e

4. Apply the linear mappings of Ex 3 to the following forms f t4 obtain equiva-
lent forms ¢ and their inverses to g to obtain I

W f= 'Kxg o b) f = 4} — dews + 33



CHAPTER II

RECTANGULAR MATRICES AND ELEMENTARY
TRANSFORMATIONS

1. The matrix of a system of linear equations. The concept of a_rec-
tangular matriz may be thought of as arising first in conneetion wilh the

study of the solution of a system ;O\
7NN “
auyr + Gueye ... Gy = kb, W O
0 iy T Oufe + ..t Ol =k, & ~N

Gm¥yt T Gmelfe + . .+ Gounlhn =K
of m linear cquations in #n unknowns 1, . . . , y,ix}vﬁ;h constant coefficients
as;. The array of coeflicients arranged as thexoceur in (1) has the form

. das W& :".' LIS
{2) 4= 21 \.\%{g}.db‘r'hulﬁﬁi"a org.in
q"m]?' :&m2 PR 1

and is called the coeﬁcientiﬁahtrix of the system (1}, We shall henceforth
speak of the coefficients ck\and k:in (1) as sealars and shall derive our theo-
rems with the undergfaiding that they are constants (with respect to the

variables ¥, . . . , @ )-according to the usual definitions and hence satisfy
the properties uslially assumed in algebra for rational operations. In a later
chapter we shall make a completely explicit statement about the nature

of these quéntities.

It is Qéﬁ‘only true that the concept of & matrix arises as above in the
studyof/systems of linear equations, but many mairix properties are ob-
tainable by observing the effect, on the matrix of a system, of certain natu-
ral manipulations on the equations themselves with which the reader is
very familiar. We shall devote this beginning chapter on matrices to that
study.

Let ua now recall same terminology with which the reader is undoubtedly
familiar. The line

(3} i = ((Ln, ey Gin)
19
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of eoefficients in the ith equation of (1) oeeurs in (2) ag its +th horizontal
line. Thus, it is patural to eall u; the ith row of the matrix 4. Similarly,
the coefficients of the unknowns ¥, in (1) form a vertical line

d1;
(4) m (5 =

ami ™\

which we call the jth column of A. A\

We may now speak of A as a mairix of m rows and » chﬁmns, as an
m~rowed and n-columned matrix or, briefly, a8 an m by matrix. Then
the rows of A are 1 by n matrices and its columns are p{by 1 matrices. We
shall speak of the scalars a;; as the elements of 4, and, ‘tlﬁey may be regarded
as one by one mafrices. The notation ay; Wthh wendopt for the element
of A in its ith row and jth column will be used; cq\r%istently, and this usage
will be of some importanee in the elarity of mh‘ gxpogition. To avoeid bulky
dispiayed equations we shall usually not ust‘ the notation (2} for a matrix
but shall write instead

db lib
(5) W raﬁlla(?jflgl _1 ,.,m;j‘—‘l:--'!”)'

If m = nthen A is & squage. matm and we shall speak of A simply as an
m-rowed square matrix, This, too, is a coneept a.nd terminology which we
shall use very frequentb&

2@  ORAL EXERCISES
1. Read off thpblements ax, Gy s, @ in the following matrices
".\50
NV 12 0 o3 1 0-2 3
R\ 3 4-1 0 2 0 1 2
BN
Mo AN dl_1 2 3 1 Bl 13 4 1
o 3 4.1 2 51 6 7
94
\ 4 0 5 0
0—1-2 -3 3 2 4 5
O T ?) (—1 1 6—6)
6 0-~-1 8

2. Read off the second row and the third column in each of the matrices of Ex. 1.

3. Rend off the systems of equations (1) with constants %; all zero and matrices
of eoefficients as in Ex. 1.
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2. Submairices. In solving the system (1) by the usual methods the
reader is led to study subsystems of s < m equations in eertain ¢ < n of
the unknowns. The corresponding coefficient matrix has s rows and ¢ col-
umns, and its eloments lie in certain s of the rows and ¢ of the eolumns of A.
We call such a matrix an s by ¢ submatriz Bof A, If 5 < m and £ < n,
the elements in the remaining m — s rows and » — { eolurmms form an
m — s by » — t submatrix C of A and we shall call € the complementary

" submatriz of B. Clearly, then, B is the complementary submatrix of €,

It will be desirable from time to time to regard a matrix as being made™

up of certain of its submatrices. Thug we write O\
(6) A={(4y (1:=1-..,83-1,v-‘,).

where now the symbols 4 ;; themselves represent rectangulax‘ matnces We
assume that for any fixed ¢ the matrices 4., A, . . ., Ayeall Rave the same
number of rows, and for fixed & the matrices diz, A2y, , 4. have the
same number of columns. It is then clear how eashrow of A isa I by {
matrix whose elements are rows of Ay, . .., 4,40 9djacent positions and
similarly for columns. We have thus accomplished what we shall call the
portutioning (6) of A by what amounts to dzawifig lines mentally parallel to
the rows and columns of 4 and bq&w&egﬁm%gﬂatmg the arrays
of elements in the smallest rectangles 50 Hormed by A Our principal use
of (6) will be the uge of the case w.here we shall regard A as a two by two
matrix

o .. &2 (Al )

whose elements 4, .4;,,’413, A, are themselves rectangular matrices, Then
A;j and A; have the'same number of rows, A5 and 44 bave the same num-
ber of rows, Eg,;%eirery row of A consists partially of a row of 4; and of a
correspondingirow of 4, or of a row of A and a corresponding row of A,
Noto«mﬁf t,{sage in (2), (5), (6}, (7) of the symbol of equality for matrices.
We shM always mean that two matrices are equal if and only if they are
identical, that is, have the same size and equal eorresponding elements.

EXERCISES

1, State how the columns of 4 of (7) are connected with the eolumns of 4, 4,
Ay, and A

2, Introduce a notation of an arbitrary six-rowed square matrix A and partition
A into a three-rowed square maftrix whose elements are two-rowed square matrices.
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Also partition 4 info a two-roweﬂ square matrix whose elements are three-rowed
square matrices.
2. Write out all submatrices of the matrix
2—-13 4 5
1 0 2-1-2
0 12 3 6
7 82 1 0

and, if they exist, the complementary submatrices. Q)

4. Which of the submatrices in Ex. 3 occur in some partitioning of 4 a‘&a matrix
of submatrices? O

5. Partition the following matrices so that they become three;mwed square mat-
rices whose elements are two-rowed square matrices and stabe the results in the

notation (6). '»"\
2-1 3 4 12 110 0 1 0
0 1 1-1 2t It ¢ 0 0 1
1-2.1 0 00 -2%0 2 o0 3 1
DFe 0 171 -1 3 DRSO 2 0 21 2
0 0 4:2 10 Ao 0-1 1-4 o0
0 0-1 .3 0 Sl o 0-1-1 04

WA dbraulli 1~ar3r:blzg.in
6. Partition the matrices of Ex. 5i&te two-rowed square matrices whose elements
are three-rowed square matrices,*

7. Partition the matrices Qf E\x § into the form (7) such that 4, is a two by three

matrix; & one by six mathg\ a two by two matrix. Read off 4., 4;, and A, and
state their sizes. . :

3. Transposi og\ The theory of determinants arose in connection with
the solution efithe system (1). The reader will recall that many of the prop-
erties of deterfuinants were only proved as properties of the rows of a de-
term]nant, and then the corresponding eolumn properties were merely
stalg\ed asresults obtained by the process of interchanging rows and columns.
WQ gall the induced process transposition and define it as follows for mat-

rices. Let A be an m by » matrix, a notation for which is given by (5),
and define the matrix

@® A= (gx) (ui=opji=1...,ni=1,...,m),

Which-we shall call the franspose of A, 1t is an n by m matrix obtained from
A by mte.rchanging its rows and columus. Thus, the element g;; in the ith
row and jth column of 4 occurs in A’ as the element in its jth row and ith
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column. Note then thatin aceordance with our conventions (8) could have
been writien as

(9) Ar=((aﬁ)j§) (j=l,...,n;13=1,...,m).
We also observe the evident theorem which we state simply as
(10) 4 =4

The operation of transposition may be regarded as the result of a ceRain
rigid motion of the matrix which we shall now describe. If 4 is Qumn by n
matrix and m < n we put ¢ = m and write N

L W

(12) = (4, 4s),

where A; is a g-rowed square matrix. On the other halﬁ if » € m, we put
g = n and have

RN
_ A], 'xl.\
(12) A= (B )\

where the matzix A, is again a ¢-rowed'square matrix. The line of elements
@11, Gas, « . . 5 Ggg 0 A 2nd hence ofidvidledldibtheyprigdipal diagonal of A
or, simply, the diagonal of A. Itdg%a diagonal of the square matrix 4, and
is its principal diagenal. We&hall call the a:: the diagonal elemenis of A.
Notice now that A’ is obtafi:\led from A by using the diagonal of 4 as an
axis for a rigid rotation 04 so that each réw.of A becomes a eolumm of 4.
We should also obsexve that if A has heen partitioned so that it has the
form (6) then A" i&tﬁé ¢t by s matrix of matrices given by
(13) Dar = @) @i=Ali=1... ti=1,. .0,
We hs,ve now given some simple concepts in the theory of matrices and
shall pass on to a study of certain fundamental operations.

Q ' EXERCISES _

1. Tet A have the form (7). Give the corresponding notation for A’. Give also
A’ if A is any matrix of Ex. 1 of Section 1.

2, In Bx. 1 assume that A = A’. What then is the form (7) of 42 Obtain the
analogous result if 4 = —A’, where — 4 is the matrix whose elements are the nega-
fives of those of A.

3. Let A be a three-rowed square matrix. Find the form () of Ai#f 4 = 4" and
also if A = — A",
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4. Prove that the determinant of every three-rowed square matrix A with the
property that A’ = — 4 is zero.

5. Solve the system (1) with matrix

i-2 1
A= (_1 : _2)
2-—-4 3
3
for i, 42, ya in terms of &y, ke, k.. Write the results as y; = z bi7%; and thus com-
i=1 Q)

pute the matrix B = (b;;). Do this also for the system (1) with matrix A™and com-
pare the results. R, \Y,

4. Elementary transformations. The system (1) may.be solved by the
method of elimination, and the reader is familiar vgit]i the operations on
equations which are permitted in this methed and\ Which yield systems
said to be equivalent to (1). The resulting opérations on the rows of the
matrix A of the system and corresponding opgrations on the columns of 4
are called elementary iransformations on A and'will turn out to be very useful
tools in the theory of matrices. AV

The first of our transformations is the Tesult on the rows of A of the inter-
change of ‘.owo eq"&’/@%ﬁb‘f@u@ﬁn g%{ﬁg;%gnsystem. We define this and the
corresponding column fransforgiation in the :

Duwinrrion 1. Let i = rand B be the malriz obtained from A by inter-
changing its ith and rth rows (columns). Then B 1s said to be oblained from A
by an elementary row {eoluinn) transformation of type 1.

The rows (columus}of an m by » mairix are sequences of n {(of m) cle-
ments, and the gperations of addition and sealar multiplication (i.c., mul-
tiplication by o aedlar) of such sequences were defined in Section 1.8.% The
left membga;;gs‘bf (1) are linear forms. The addition of a sealar multiple of
one equgtien of (1) to another results in the addition of a corregponding
multiplé of & corresponding linear form to another and hence to a corre-
sponthing result on the rows of 4. Thus we make the following
{\DErrNTTION 2. Let i and 1 be distinet indegers, ¢ be a scalar, and B be the
matriz obtained by the addition to the ith row (column) of A of the multiple
by ¢ of itz rth row (column). Then B s said fo be oblained Jrom A by an ele-
mentary row (column) transformation of type 2.

Our final type of transformation is induced by the multiplication of an

* We shall use & corresponding notation henceforth when we make references any-
where in our text to results in previous chapters. Thas, for example, by Section 4.7,
Theorem 4.8, Lemma 4.9, equation (4.10) we shall mean Section 7 , Theorem 8, Lemma 9,
equation (10) in Chapter IV. However, if the prefix is omitted, as, for example, Theorem 8,
we shall mean that theorem of the chapter in which the reference is made.
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equation of the systv‘m (1} by a nonzero scalar @¢. The restriction ¢ = 0
i3 made S0 that A will be

obtainable from B 1 i i
for . Later we shall dis Cementy aiy mosormation

cuss matrices whoge i
| C elements are polymomizls
{n z and use clementary transformations with polynomial scgg,fs:l a. We

dall then evidently require a to be a polynomial with a polynomial inverse
snd hence to he & constant not zero. In view of this fact we shall phrase
the definition 1 our prcse.nt environment so as to be usable in this other
gtuation and hence state 1t as

DeeisiTion 3. Let the scalar 2 possess an inverse a~t and the matrizBbe
dained as the result of the reultiplication of the ith row (column) of A by a.
Then B 19 said to be obtained from A by an elementary row (column®irans-
formation of type 3. O

The fundamental theorems in the theory of matrices are donnected with
fhe study of the matrices obtained from a given matrix A by the applica-
tion of & finite sequence of elementary transformatiény) restricted by the
particular results desired, to A. Thus, it is of basis importance to study
first what occurs if we make no restriction whatéver on the elementary
transformations allowed. For convenience lnbur discussion we first make
ihe WV

DeFivitioN, Let A and B bem by n madrices and let B be obtainable from A
by the successive application of ﬁn{tel@@m“@%ﬂ?@irﬁﬂlﬁzﬁm@f%%tmmfom’
lions. Then we shall say that A is rationally equivalent to B and indicafe this
by writing A & B.

We now observe somme simlﬁk consequences of our definition. First, we
wee that, if A is rational!Muivalent to B and B is rationally equivalent
to €, the combination of the elementary transformations which earry A to B
with those which carty B to C will carry 4 to C. Then A is rationally
equivalent to C. .@Béerve next that every m by » matrix 4 is rationa.}ly
equivalent to .‘Q{self. For the elementary transformations of type 2 with
¢ =0 and of type 3 with a = 1 are identical transformations leaving all
matricesinaltered.

Ft"‘i';?ﬁ;: we see that if an elementary transformattion carries A to B there
is an inverse transformation of the same type carrying B to 4. In fact, the
inverse of any transformation of type 2 defined for ¢ is ‘th'at defined for —¢,
of type 3 defined by a is that defined for o, of type 11s itself. But then A
is rationally equivalent to B if and only if B is rationally equivalent to A.

* The reader should verify the fact that, if we apply any elementary row tl:s,nSfc.:rma-
tion to A and then any column transformsation to the result, the matrix cbtained is the
s&me a5 that which we obtain by applying first the column transformation and then the
row transformation.
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Thus we may and shall replace the terminclogy A is rationally equivalent
{0 B in the definition above by A and B are retionally equivalent.

- We have now shown that in order to prove that A and B are rationally
equivalent it suffices to prove 4 and B both rationally equivalent to the
game matrix C. As a tool in such proofs we then prove the following

Leyma 1. Lelr < m, 8 < n, and A and B be m by n matrices of the form

(A O (B, 0O
A=(0" %) 200" n): N

Jor r by s rationally equivalent matrices A, and By and m — r by'p— s ra-
tionally equivalent matrices Ay and Bs. Then A and B are rationally équivalent.
Forit is clear that any elementary transformation on the first rrows and s
columns of A induces a eorresponding transformation orf\ A} and leaves 4,
and the zero matrices bordering it above unaltered, Clearly the sequence
of such transformations induced by the transforniations carrving A4: to 8,
will replace 4 by the matrix N
By 0\
Ao = (0 49.‘),?“
We similarly follow this sequence ofiélementary transformations by ele-
mentary transformationg dtubhtillaatynery mrows and n — s columns of A,
which carry A to B and obtaimB.

It iz important also to obsgrvé’that we may arbitrarily permute the rows
of A by a sequence of elemenfary row transformations of type 2, and simi-
larly we may permute ifgicolumns. For any permutation results from some
properly chosen sequence of interchanges,

Before continuing further with the study of rational equivalence we shall
introduce the fa{’njliar properties of determinants in the language of matrix
theory and shallalso define some important special types of matrices. We
shall thel\pkiisauss another result used for the types of proofs mentioned
above, o\

N
\'3\.3 Determinants, Let B be the square matrix
(14) B = (by) Gi=14...,0.

The corresponding symbol
b]_l - bu

(15) D = b21 LR bz:



RECTANGULAR MATRICES 27

is called & t-rowed determinant or determinant of order ¢. It is defined as the
sum of the #/ terms of the form

(16) (=1 bubag, . .. by,
where the sequence of subscripts 4, . . . , 4, ranges over all permutations
0f1,2, ..., tand the permutation 21, . . . , t, may be carried into 1,2, . . .,

¢ by ¢ interchanges. That the gign (— 1}/ is unique is proved in L. E. Dick-
son’s First Course in the Theory of Equations, and we shall assume-this re-
sult as well as all the consequent properties of determinants deriyé@ there,

The determinant D will be spoken of here as the determinant af thomatrix
B and we shall indicate this by writing g >

(17) D = |B| |

7
!

"
{read D equals determinant B). Nonsquare matpiges’ A do not have de-
terminants, but their square submatrices haye\determinants called the
manors of 4. 1f A is a square matrix of n > £ rgWs, the complementary sub-
matrix of any {-rowed square submatrix Bus.eén (n — {)-rowed square ma-
trix whose determinant and that of B are ininors of A called complementary
miners. In particular, every element ag, of a matrix A defines a cne-rowed
square submatrix of A whose deteiaﬁima@lﬁrimh]m—migm@nﬁtself. Thus we
have seen that the elements of a mtdriz may be regarded etther as tls one-rowed
square submalrices or as s gn'\e~rowed menors. We now pass to a statement
of some of the most impaorfant results on deferminants,

The result on the interohange of rows and columns of determinants men-
tioned in Section 3 may now be stated as

Lemma 2. Let \A be' o square matrix. Then

2\& o

® O A = 1Al

The next*three properties of determinants are those frequently used in
the ggrﬁiéﬂtation of determinants, and we shall state them now in the lan-
gufige)we have just introduced. :

Lemma 3. Let B be the mairiz oblained from a square matriz A by an ele-
mentary iransformation of type 1. Then |B} = — [A].

LEmua 4. Lel B be the malriz oblained from o square matriz A by an ele-
mentary transformation of type 2. Then |B| = |Al.

LeEMMa 5. Let B be the matriz obtained from a square matriz A by an ele-
mentary transformation of type 3 defined for a scalar a. Then |B| = a « [Al.

The reader will recall that Lemmsa 3 may be used in a simple fashion
to obtain
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Lemuma 6. If a square mairiz has two equal rows or columns, tts deferni-
nani s zero,

Another result of this type is

Lemuma 7. If @ square matriz has a zero row or column, s determinant 18
zer0.

Finally, we have

Leuma 8. Let A, B, C be n-rowed square mairices such that the ith row
(column) of C 1s the sum of the ith row (column) of A and that of B whiigaﬁ
other rows {columns) of B and C are the same as the eorresponding rows {col-

umns) of A. Then A\
O\

(19) |Cl = |Al+1B]. W&

S,
£ NG

There are, of course, many other properties of determindnts, and of these
we shall use only very few. Those we shall use are; of course, also well
known to the reader. Of particular importance is that result which might
be used to define determinants by an inductiorden order and which does
yield the actual process ordinarily used in the.expansion of a determinant.
We let A be an n-rowed square matrix 4(="{a;;) and define di; to be the
complementary minor of a;;. Then thewesult we refer to states that if we
define ¢;i = (—1) ﬁ’dﬁx}&?&rauhhﬁéi’;org.in

LN n
(20) |A] =’zaikcﬁ = zcikaki‘ @4 =1...,m)-
XS ,\k =1 k=l
Th . XN .

us, the determinanpof ¥ is obtainable as the sum of the products of the
elements @;; in any/p0w (column) of A by their cofactors ¢, that is, the
properly signed n:(lﬁabeled minors (—1)#id;;,

The result £20) is of fundamental importance in our theory of matrices
and will bQipblied presently together with the following parallel result.
Let B be Zt}le matrix obtained from a square matrix A by replacing the ith
row of"A by its ¢th row. Then B has two equal rows and by Lemmsa 6
|B|_*= 0. We expand B as above according to the elements of its ith row
and obtain as its vanishing determinant the sum of the produets of all ele-
ments in the gth row of A by the eofactors of the elements in the ith row
of A. Combining this result with the corresponding property about col-
umns we have

" n
(21} Za’ikc}cg = ZCakakg =0
E=1 k=1

GEgsEftfhas=1...,nm.
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The equations (20) and (21) exhibit certain relations befween the arbitrary
square matrix A and the matrix we define as

22) adj A = (¢i;) Gi=1...,m).

These relations will have important later consequences. We call the matrix
{(22) the adjoint of 4 and see that if A = (g;;) is an n-rowed square matrix
its adjoint is the n-rowed square matrix with the cofactor of the element
which appears in the jth row and dth column of A as the element inits
own {th row and jth ecolumn, Clearly, if 4 = 0 then adj 4 = 0. .

O\
EXERCISES -
1. Compute the adjoint of each of the matrices

0D 001D o3 o 3

2. Expand the determipants below and verify the\fqﬁ“owmg instances of Lem-
ma 8:

3 2 -1 3 -3 —1§)" 138 —1 ~1
a) {1 2 0+ 1 —1"351)J =1 1 0
6-1 3 Qv P baulibpdly=cbg.id
1 -1 ¢4 P S 0 0 1
B) {1 -1 1|+ -1 1|=[1-1 1
2 3 4,02 8 4 [2 3 4

N\

6. Special matrices. Thée are certain square matrices which have spe-
cial forms but which gegur so frequently in the theory of matrices that they
have been given spepial names. The most general of these is the friangular
matrix, that is, & §quare matrix having the property that either all its ele-
ments to the 1t or 21l to the left of its diagonal are zero. Thus a square
matrix A =2¥a,;) is triangular if it is true that either a;; = 0 forallj > 4 or
that gipns U forall j < ¢. It is clear that A is triangular if and only if 4" is
tnanﬁlar and, moreover, we have

Theorem 1, The determinant of a triangular matriz i3 the product anfs

. 8nn of tls diagonal elements.

The result above is clearly true if » = 1 so that A = (an), [4] = an.
We assume it true for square mairices of order » — 1 and complete our
induction by expanding |4 | according to the elements of ifs first row or
first eolumn in the respective cases above.

A matrix A = (ay;) is called a diagonal matrix if it is & square matrix,
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and ay = 0 for all ¢ s j. Clearly, a diagonal matrix A is friangular so
that its determinant is the product of its diagenal elements.

If all the diagonal elements of a diagonal matrix are equal, we call the
matrix a sealor matrix and have |A| = ¢%. The scalar matrix for which
air = 1 iz called the n-rowed tdentity matriz and will usually be designated
by I. If there be some question as to the order of I or if we are discussing
several identity matrices of different orders, we shall indicate the order by
a subscript and thus shall write either 7, or I as is convenient for the n-

rowed identity matrix. . N\
Any sealar matrix may be indicated by O\
(23) ol O

where ¢ = a,; is the commeon value of the diagonal elements of the mafrix.
We shall disceuss the implications of this notation laten

1t is natural to call any m by n matrix all of whose elements are zeros
a zero mafriz. In any discussion of matrices we shall use the notation 0 to
represent not only the number zero but anyz Jero matrix. The reader will
find that this usage will cause neither dlfﬁcll]‘ty nor confusion.

We shall frequently feel it desirable td\consider square matrices of either

of the forms wwwr.d braulibl'a‘ry:.‘c’)l‘ g.in
Al 0,, jr : ) (.Al Ag
24: A = P N ¢ =
@) (Aa..\“-a 4 0 A4) '
)

where A, is a square mat\is} Then (24) implies that A, is necessarily square,
and the reader should. verify the fact that the Laplace expansion of de-
terminants implies\fhat
A
o Al = 4. = [A4] + |44 .
AT = Al = 1

The pmperty above and that of Theorem 1 are special instances of a
more general situation. We let A be a square matrix and partition it as in
(6) with s = ¢ and the submatrices A; all square matrices. Then the La-
place expansion clearly implies that if all the A,; are zero matrices for either
all i > j orall 4 <j, then |A| = |Ayn|... |44|. Evidently Theorem 1
is the case where the A ;; are one-rowed square matrices and the result con-
sidered in (24) the ease where t = 2,

In connection with the discussion just completed we shall define a nota-
tion which is quite useful. Let A be a square matrix partitioned as in {6)
and suppose that s = ¢, the 4,; are all square matrices, and every 4;; = 0
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for ¢ # j. Then A is composed of zero matrices and matrices A; = A4
which are what we may call its diagonal blocks, and we shall indicate this
by writing

(25) A = disg {4y, ..., 4.

As above, the determinant of A is the product of the determinante of its
submatrices 4,, ..., 4. ~
In closing we note the following resuit which we referred to at the close

of Section 4. O\
LemMa 9. Every nonzero m by n mairiz A 1s rafionally equwahmt o a
malriz ~\
I 0 0
AN
(26) (0 o) 3
where 1 15 an identity matriz. ' \\

For by elementary transformations of type ¥ v& may carry any element
e 7 0 of 4 into the element by of a matrix Bwhich is rationally equivalent
to A. By an elementary transformation af\type 3 defined for a = by we
replace B by a rationally equivalentvmatlixa0lbith 0% . We then apply
elementary row transformations of tﬁpé 2 with ¢ = —¢n to replace C by
the rationally equivalent matrix/® = (d;;} such that dn = 1, dy = 0 for
r>1, and then use elementargs column transformations of type 2 with

= ——d1, to replace D by the matrix

: (L 0
(27) O\ A, = (0 AI) ’
I

Now 4,isan O 1 by n — 1 mafrix, and I is the identity matrix of one
row. Clearly;. 4 ‘and A, are rationally equivalent. Moreover, either 4, =
and we havet (26) for I = I, or our proof shows that A, is rationally equiv-
alent €o t\ 4 matrix

(28) B = (g‘ is) .

But then, by Lemma 1, A is rationally equivalent to a matrix

y 00 .
(29) (o I, 0)=(£’ ?1).
0 0 A *
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After finitely many such steps we obtain (26).
We shall show later that the number of rows in the matrix I of (26) is

uniquely determined by 4.

EXERCISES
1. Carry the following matrices info rationally equivalent matrices of the
form {26)
3 5 10 4 11 2
g 0 1 21 Bz 8 5 N
-1 -1-2 0 12 3
101 2 —1111‘\'\2\
20 2 3 3 -3 -3 3|\
9o 00 0 D)2 2 2 s
1011 0 0 170
2. Apply elementary row transformations only and cacrr’j; each of the following
madtrices into a matrix of the form (206) RN
10 1 0¢¢

21 - 3 2 0 0

{11 — b 2 2 —5a0 (2 4 00
-2 1 =5 -3

3 2 - 4 5 0 0
www.dbra 1bpar§' or gt?n

3. Apply elementary column tranatformatwns only and carry each of the follow-
ing matrices into a matrix of the fexm (26).

\ -

' 0

23\-2 b)

54 1 0 -3 0
\ 1 0 —1 -1

Y10 3-1y (0 10 2
‘3\(—124 ) d)0513)
4, Show' “that if the determinant of a square matrix A is not zero then A can be
carned mto ‘the 1dent1ty matrix by elementary row* transformations alone. Hint:
rpperty | 4] # 0 is preserved by elementary iransformations. Some element

in t.h first column of A must not be zero, and by row fransformations we may
carry A into & matrix with ones on the diagenal and zeros helow and then into I.

7. Rational equivalence of rectangular matrices. The largest order of any
nonvanishing minor of a rectangular matrix 4 is ealled the rank of 4. The
result of (20) states that every (¢ + I)-rowed minor of A is a sum of nu-

* Not every matrix may be carried into the form (26) by row transformations only,
e.pg., take 4 = (1 1).
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merical multiples of its {-rowed minors, and if the latter are all zero so are
the former, We thus clearly have

Levma 10, Let all (r 4 1)-rowed minors of A vanish. Then the rank of A
8 af most r.

We may also state this result as

Lumma 11. Lef A hove a nonzero r-rowed manor and let all (v 4 D-rowed
minors of A vanish. Then r is the rank of A.

Note that we are assigning zero as the rank of the zero mafrix and that
the rank of any nonzero matrix is at least 1. :

The problem of computing the rank of a mafrix A would seem ffoni our
definition and lemmas to involve as a minimum requirement, the’ “gomputa-
tion of at least one r-rowed minor of 4 and all {r + 1)-rowed) minors, The
number of determinants to be computed would then normially be rather
large, and the computations themselves generally quite-cbmplicated. How-
ever, the problem may be tremendously simplified\by*the application of
elementary transformations. We are thus led to.gtudy the effect of such
transformations on the rank of a matrix. S

Let then A yresult from the application ofanelementary row transforma~
tion of either type 1 or type 3 to 4. By, Lemmas 3 and 5 every i-rowed
minor of A is the product by & nonzepitsealibioira angdaely eorresponding
t-rowed minor of A, and it follows fBat A and 4, have the same rank. If
Ay results when we add to the sth ¥ow of A the produet by ¢ # 0 of its gth
row and B is a t-rowed square@ubmatrix of A, the correspordingly placed
submatrix By of 4¢is equal 6.8 if no row of B is a part of the ithrow of A.
If, bowever, a row of Biis in the 7th row of A and a row of B is in the gth
row of B, then by Lemma 2.4 we have |Bq| = {B]|. If, finally, a row of B
is in the ith row of @A\But no row is in the gth row of A, then by Lemma 8
Byl = |B] +'a‘[0‘|", where C iz a t-rowed square matrix all but one of
whose rows cgineide with those of B, and this remaining row is obtained by
replacing the elements of B in the 7th row of A by the correspondingly
columned\eflements in its gth row. But then it is easy to see that + [C] is
o mifior 65 4 as well as of A4, If A hasrank r we put £ = r + 1 and sce
that |B| = || = 0, |By| = 0 for every (r + 1}-rowed minor [B,] of 4.
Also there exists an r-rowed minor [B} 5 0in 4, and our proof shows the
existence of a corresponding minor {B,| = |B| or [Bs| = |B| +¢[C] in
A, Buf then |Bg} = 0 implies that |C] = —¢{B]| # 0, and 4, has a
nonzero r-rowed minor + (C], 4 and A have the same rank.

We observe, finally, that if an elementary row transformation be ap-
plied to the transpose A’ of A to obtain A, and the corresponding eolumn
transformation be applied to 4 to obtain Aq, then A7 = A,. By the above
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proof 4’ and A; have the same rank, by Lemma 2 4 and A’ have the same
minors and henee the same rank, so that 4, and A] = A, have the same
rank. Hence, A and 4, have the same rank. Thus, any two raiionaily
equivalent matriees have the same rank.

Conversely, let the rank » of two m by n matrices A and B be the same
and use Lemma 9 to carry A into a rationally equivalent matrix (26). It
is clear that the rank of the matrix in (26) is the number of rows in the ma-
trix I. By the above proof A and this matrix have the same rank, I = I,
4 is rationally equivalent to Q

I. 0 O\
(30) (0 0). A\

.\'

Similarly, B is rationally equivalent to (30) and to 4. Wethavo thus proved
what we regard as the principal result of this chapter\

Theorem 2. Two m by n matrices are rationall\egiivalent if and only if
they have the saume rank. Ky N

We have also the consequent

CoroLLARY, Every m by n matriz of mnl T is mtmnally equivalent to an
m by n matriz {30).

A matrix is calledmem{ﬂmﬁagtyso@ Sgare matrix and its determinant
is not zero. But then Theorem 2.J,mp11es ag in Ex. 4 of Section 6,

Theorem 3. Every n- rowed polsingular matriz is rationally equivalent to
the n-rowed identily mairiz, \

In closing let us obser v\e «a result of the application to a matrix of either
row transformations m‘% or column transformations only. We shall prove

Theorem 4. Evergvm by n matriz of rank v > 0 may be carried into a
mairic of the fog@?

oy A (), @ o,

ad
&

respf{cﬁvely, by a sequence of elementary row or column transformations only,
where G is an t-rowed matriz, H is an r-columned matriz, and both G and H
have rank r.

For A is equivalent to (30) by a sequence of elementary row and column
transformations. Clearly, we may obtain (30) by first applying all the row
transformations and then all the column transformations. If we then apply
the inverses of the column transformations in reverse order to (30), we ob-
tain the result of the applieation of the row transformations slone to A.
But column transformations applied to (30) clearly carry this matrix into
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a matrix of the form given by the first matrix of (31). Moreover, it is evi-
dent that the rank of this matrix is that of &, @ has rank r. The result for
column transformations is obtained similarly.

EXERCISES

1. Compute the rank 7 of the following matrices by using elementary transforma-
tions fo carry each info a matrix with all but r rows (or columns) of zeros and an

obvious r-rowed nonzero minor, \
11 3 2 -1 4 Oy
s} {1 5 2 b) (1 3 - 2) ;;’}\ )
I 5 -1 1 —-11 14 A y
A\ 3
6 4 3 -8\
I ~3 4 A7)
c) |4 =12 186 d) 12 33
s _ o 1o 1-2 13 ~12
4 4 —»}\

2. Carry the first of each of the following pairs ui‘matrlces into the second by
elementary transformations. Mint: If necessary_ carry A and B into the form (30}
and then spply the inverses of those transforma{txom which carry B into (30} to

carry (30) into B. oy dlu“aullbl‘aly org.in
2 —~1 3\ T 0 2
PR
1 -1 ! 60 1
~\
\\3“ 1 2 0 -1
by A = ( 2), B=[6 0 3
2“' -4 1 1 ¢ 1
4 \
N -2 1 11 o
\,{“\A (z —4 2), B=1{11 0
O 3 —6 3 00 0
§'.\“:;'



CHAPTER IT1
EQUIVALENCE OF MATRICES AND OF FORMS

1. Multiplication of matrices, If xy, ..., z. and 4, ... , ¥, are variables
related by a system of linear equations 2N
n y \\.
(1) ' Li = zairyi &= 1:< -, m) ,
i=1 N/

%
ol
7%

this system was said in Section 1.9 to define a linear mapping :{:arrying the
x; to the y;. We call the m by » matrix A = (a;) the’:}zatrix of the map-
ping (1} \*

Suppose now that z,, . . ., z, are variables geis}béd toyy, ...,y bya
second linear mapping N
LY O
(2) N G=1...,m),

www.dbrauﬁ’br_al rgin
?~

with » by ¢ matrix B = (b,-k),';;:arl"jzing the y; to the 2,. Then, if we sub-
stitute (2) in (1) we cbtain sgﬁt:hird linear mapping

®Q ‘ |
(3) = zcﬁ:z}c G=1...,m)),
k=1

PN

N
with m by ¢ wétrix € = (eq), and it is easily verified by substitution that
O

4 "\ ) Ciy = E Giib
™ =1
N\ =1,

= ampk=1...,0.
The linear mapping (3) is usually called the product of the mappings (1)
and (2), and we shall also write (' = AB and call the matrix C the product
of the matrix 4 by the matrix B. :

We have now defined the product AB of an m by n matrix 4 and an
n by ¢ matrix B to be a certain m by ¢ matrix €. Moreover, we have de-
fined € so that the element ci: in its ith row and %th column ig obtained

36

"



EQUIVALENCE OF MATRICES AND OF FORMS 37

as the sum ¢y = Gabix + @ishar + .. . + Guwbar of the products of the
elements a;; in the 7th row :

(5) (a'a'l; iny . .. ¥ aﬁn)

- of A, by the corresponding elements b;; in the kth column

b
bor ™\
(6) ' ’ O\
) '\
bnk R "}‘.

of B. Thus we have stated what we shall speak of as th@}olv by column Tule
for multiplying matrices. \

Observe that if either 4 or B is a zero matgia;%he product AB is also.
Moreover, if 4 is an m by » matrix, then wehave

(N I.A = Al = ¥,

where [, represents the r—rowed“ﬁ{éﬁfi%?%%ﬁ?&%r ﬁé’é for every r as in
Section 2.6. Observe also that 7,88 the matrix of the linear transforma-
tion z; = y; for ¢ = 1, ..., sghand thus in this case the product of (1)
by (2) is immediately (2); hénee (7) is trivially true.

We have not defined an%éha]l not define the product A B of two matrices
in which the number ofﬁelumns in A is not the same as the number of rows
in B. Then, evidenplyiAhe fact that AB is defined need not imply that BA
is defined. But whefl both are defined, they are generally not equal and
may not eve ematrices of the same size, This latter fact is clearly so if,
for example,;}t is m by n, B is » by m, and m # n.

IHA a,QdB are n-rowed square matrices, we shall say that A and B are
commtiitative if AB = BA. Note the examples of noncommutative square
matridés in the excrcises below.

Finally, let us ohgerve the following

Theorem 1. The transpose of ¢ product of two matrices ts the preduct of
their transposes in reverse order.

In symbols we state this result as

8) (ABY = B'A’.

Here A is an i by n matrix, B is an n by ¢ matrix, (4B)" is & ¢ by m ma-
trix, which we state is the produet of the ¢ by » matrix B” and the n by m
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matrix 4. We leave the direct application of the row by eolumn rule to
prove this result as an exercise for the reader,

EXERCISES

1. Compute (3) and hence the product € = AB for the fo].lhwing linear changes
of variables {mappings) and afterward compute ¢ by the row by colurnn rule.

a) l$1=2yl+ 2 {y1= #— 2+ 2

Tz = 3h — W 2
= -2z 2 — 3z
o+ 2y U 1+ 22 3 .
; O\
N

{xl = 2y -+ 3t — Us {yl —13z; + 2625 + 1335
b}

Q"

Fa

l

= it etdp s 9 — 185 — 0%
= Yo— D Yz = 21— Dzg s

# { 2
2. Compute the following matrix products AB. Computié’}lso BA in the cases
where the latter product is defined.

PN _
4 3 2 /-1-2 -3 O 4 13 2
a}321)'130 b);':412)_101
2 1 -1/ \~1 -2 ¢ O 3 2 0
1 -3 N )
—2 5 wbrhu r:ary._'érg_in
2 3 —1]\1 1 4 “%j.;' d) (g)(E -1 3 &)
0 -2 X
e
12
SIHEEEE
& 1

3. Let the syr}gbé}E i7 represent the three-rowed square matrix with unity in the
ith row and it ‘column and zeros elsewhere. Verify by explicit computation that
BBy = Eg and that if j = ¢ then ByE,, = 0.

2. .frpé\zissociative law. It is important to know that matrix multiplica-
tion“has the property

(9) (AB)C = A(B(C)

for every m by n matrix A, n by ¢ matrix B, ¢ by s matriz . This result
is known as the associative law for matrix multiplication and it may be
shown as a consequence that no matter how we group the factors in forming
a product 4, . .. A, the result is the same. In partieular, the powers A* of
any square matrix are unique. We shall agsume these two consequences of
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{9) without further proof and refer the reader to treatises on the founda-
tions of mathematics for general discussions of such questions.

To prove (9) we write 4 = (a;), B = (by), C = (ew), where in all
casesz = 1,...,m;i=1,...,mk=1,...,¢;1=1,...,s Thenit
ig clear that the element in the fth row and Ith column of ¢ = (AB)C is

P %
(10) G = Z ( zaﬁbﬂc)cki ’ A

E=1hi=1
while that. in the same position in H = A(BC) is R O
n g ™
an hi = zaii(zbjkckl) : AN 3
i=1 =1 m'\"'

Each of these expressiong ig a sum of ng terms which Qaré respectively of the
form {a. b err and a{bjwciy). But those terms i respeciive sums with
the same sets of subseripts are equal, since We}xﬁire already assumed that
the elements of our matrices satisfly the(@sSociative law albe} = (abe.
Henee, gy = haforalliand L, G = H};md (9} is proved.

wwyistlbraulibrary.org.in

EXERCISES
Compute the products {AB)C %‘nd‘}I {BC) in the following cases.

2 -1 3 M 2 -1 104
(3 1 2), \’B=( ! 2)’ C=(_v1 3 2)

0 -1 /A -1 1

a) A

1

AN
O\
\

AN/ 1 -1
2 20238 /2-1001
by 4 = (3.%? 4)1 Bz( 0'_5)’ C= (—-1 11 0)

-1 -2
\ 2_-
AN 1
NS (1 2 -1 ), B={p_
1

™

¢ e

3. Products by diagonal and scalar matrices. Let A = {as;)beanmbyn
matrix and B be a diagonal matrix, and designate the ith diagonal element
of B by b;. Then our definition of product implies that if B is m-rowed 0
that BA is defined, then :

(12) BA=(b,-a.-,—)
G=1,...,mi=1,...,n});

LI e ]
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while if B is n-rowed, then

(13) AB = (aih)
G=1,...,m;j=1,...,n).

Thus the product of a matrix A by a diagonal matrix B on the left is ob-
tained as the result of multiplying the rows of 4 in turn by the correspoend-
ing diagonal elements of B; the product of A by & diagonal matrix on the
right is the result of multiplying the columns of A in turn by thelcorre-
sponding diagonal elements of B.

Now, let m = n, A4 be a square matrix. Then from (12) and\(i?y) we see
that AB = BA if and only if 4

N

(14) {(bs — b)us; = 0 \@; J=1...,n).
As ap immediate consequence of the ease b, = . . \="b, we have the very
simple \\

Theorem 2, Every n-rowed scalar malriz @NOmmutatwe with all n-rowed
square malrices. .

We next sec that, if ¢ 7 § and b ;-é b_,, then (14) implies that i = 0.
This gives the resu]t we slgﬁal

Theorem 3. Let the Hzagoncglu %}%ﬁ s'df an n-rowed diagonal matriz B be
all distinct. Then the only n-rowed square matrices commutative with B are
the n-rowed diagonal matmces\

We may now prove ghe'\converse of Theorem 2—a result which is the
ingpiration of the namexalar matriz.

Theorem 4. The enly n-rowed square malrices which are commulative with
every n-rowed squa?‘e matriz are the sealar matrices.

For let

(15) .0~'§“ ' B = (bﬁ) (3’ j; =1,..., n)

and, suppose that B is commutative with every n-rowed square matrix A.
Woshiall seloct A in various ways to obtain our theorem. First, we lct E; be
the diagonal matrix with unity in its jth row and eolumn and zeros else-
where and put BE; = E;B. Equations (12) and (13) imply that the jth
row of BB is the same as that of B and the jth column of BE; is the
same as thai of B, while all other eolumns of BE; are zero. Thus if ¢ I
the elements in the ith column of E;B must be zero. Since bj; is in the
ith column, we have b;; = 0 for j = ¢, and Bisa diagonal matrix. If D,
is the matrix with 1 in its first row and jth column and zeros elsewhere, the
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product BD; has by in is first row and jth column and is equal to the
matrix ;B which has b;; in this same place. Hence, bj; = bu = b for j = 2,
., n, and B is the scalar matrix bl,.
Let us now chserve that if 4 is any m by n matrix and a is any scalar,
then

(16) ()4 = Alal,)

is an m by » matrix whose element in the ith row and jth column ig the
product by @ of the corresponding elemen{ of A. This is then a, type of
product N

(17) ad = Ao A\ o)

~\
like that defined in Chapter I for sequences, and we shalheall such a product
the sealar product of ¢ by A. However, we have Qgﬁned (17) as the in-

gtances (16) of our matrix product (4. \\

EXERCISES

1, Compute the products 4B and BA by';1 f}eé s ?g (yzgr@%(w) as well as the
row by column rale if

".
3

10 O 2 4 —5
a)A=(0 -2 a;[ B=(~—4 0 1)
Q\a -1 -3 -2

0 0 -1 0 -2
b)A—E{}‘-—l 0), B=( 21 4)
HYAD 00 -2 3 -3
® M

AN /20 06 0 00-1 0
02 0 0 _foo 01
AV A=ty 92 o) B=l10 0 0
\”\ 00 0 -2/ 01 0 0

3 300 010

d)A=(020), B=(D 0.1)

001 200

2. Find all three-rowed square matrices B such that BA = AB if

1 00 010
O A={0~—1 0 BA={00 1
0 0 2 100
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3. Prove by direct multiplication that BA = —ABif i* = —1 and
i 0 0—1
A=(0 -1:)' B=(1 0)

4. Let w be a primitive cube root of unity. Prove that BA = wAB if

100 01 0
A={o wo ), B={0oo01
0 0 w a 00

5. 8how that the matrix B of Ex. 4 has the property B® = af and thab the
matrix A has the property A8 = I. Obtain similar results for the matrices'ofiEx. 3.
PN

6. Compute BAB if A
A=t —d _ (0 -1 )
N (a c/”’ T\l D) LV

where ¢ and d are any ordinary complex numbers, ¢ aed 3 are their conjugates.

O

4. Flementary transformation matrices. We'sfrall show that the matrix
which is the result of the application of any glémentary row (column) trans-
formation to an m by n matrix A is a corrésponding product EA (the prod-
uct AE) where E i¥’ '&"’ﬁﬂﬁfﬂ&hbﬂé‘ﬂéﬂkﬁﬂ@d square matrix. We might of
course give a formula for each B and verify the statement, but it is simpler
to deseribe E and to obfain our results by a device which is a consequence
of the following

Theorem 5. Lei A be m by n matriz, B be an n by q malriz so that
C =ABisanmbyq mamx Apply an elementary row (column) transforma-
tion to A (to B) resulmmm what we shall designate by Aq(by B), and then
the same elememaw ﬁmnsf ormation to C resulting in Cy (sn C®). Then

(18) \:“,,\" Co= AB, C®=AB®,
O\

For proof we see that if we replace a;; by e, in the right members of (4)
we geb c,k Thus we obfain the result of an elementary row transformation
of type 1 on AB by applying it to A. Our definitions also imply that for
elementary row transformations of type 3 the result stated as (18) follows
from

(19) Z(aasf)bm = ﬂzﬂi:‘bﬂe = acy

i=1 i=1
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Finally, we see that for type 2 they follow from

(20) Z(&,, + m”)b’]‘ = (Zai}bﬂr) + G(Zau fk) = Cip T CCak

i=1 J=1 j=1

G=1...,0mk=1,...,9,

and we have proved the first equation in (18). The corresponding column
result C1® = AB® has an obvious parallel proof or may be thought of/as
being obtained by the process of transposition. It is surely unnecessarirto
supply further details. R\,

We now write A = I'4 where I is the m-rowed identity matricand apply
Theorem 5 to obtain Ay = I4, in which I, is the matrix called E above.
Then we see that to apply any elemeniary row tmnsfomé’ation to 4 we
simply multiply A on the left by either By, Pylc), or R.{a)\ Here we define
I;; to be the mafrix obtained by interchanging the\gth and jih rows of
1, Py{e) by adding ¢ times the jth row of [ toits atb\ﬁ)‘w Ri(a) by multiply-
ing the ith row of I by a #¢ 0. We shall call Eyy P\,(c), and R.(a) elemeniary
transformation matrices of types 1, 2, and 3 I‘espectwely

Observe that s df;mullbraly org.in

(21) E:; = E:u = Eia X . Ea:Eu = I

s0 that, if we now assume that B s n—rowed, the produet 4 £;; is the result
of an elementary column tra{agformation of type I on A. Similarly,

(22) [Pule)l =P ﬁf{c.):r\ Pi(—)Pyle) = Pi{e)Pi~¢c) =1,

and if P{e) iz n1o ’éci, then APf,-(c) is the result of an elementary column
transformation pf\fype 2 on A. TFinally,

(23) L& ’C\l’““ RBia), BideMEie) = Bla)R:(a™) =1,

and i R;(a) is n-rowed, then 4 R;(a) is the result of an eiementa,ry coliumn
transforfnation of type 3 on 4. Thus the elementary eclumn transiorma-
tions give rise to exactly the same set of elementary transformation mat-
rices as were obtained from the row transformations.

We shall now interpret, the results of Section 2.7 in terms of elementary
- transformation matrices. First of all, we may interpret Theorem 2.2 as the
following
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TEvma 1. Let A and B be m by n malrices. Then there exist elementary
transformation matrices Py, . . ., Po, Qu, - . ., Q: such that

B=(Pi...PJAQ:...Q

if and only if A and B have the same rank.

Theorem 2.3 is the case of Lemma 1 where A is the n-rowed identity
matrix, and consequently B = Pi1. .. P& ... Q. Thus we obtain

Lemma 2. Every nonsingular mairiz is o product of elemeniary transforma-
tion mairices. '

We shall close the results with an important consequence of Theorem 2.4.

Theorem 6. The rank of a product of two matrices does not expeedithe rank
of either factor. « N

For, by Theorem 2.4, if the rank &f A is r, there exists@a Sequence of ele-
mentary transformations carrying A into an m by n matrix A, whose hot-
tom. m — r rows are all zero. By Theorem 5, if we #pply these transforma-
tions to € = AB, we obtain a rationally equivale{m matrix Cy = A¢B. Then
the bottom m — r rows of the m-rowed matrix C, are all zero, and the
rank of 'y is the rank of ' and is at most r,’ﬁo desired. The corresponding
result on the relation between the ranks 8¢ and B is obtained similarly.

www.dbraulibrary .ordin

EXERCISES

1. Express the following as pmdt)c.éts’ of elementary transformation matrices.

AN/11 01 6 4 3
2) (; 3),;’,\5) (2 —6 1) &) (1 2 3)
N 3 4 2 1 -2 1

2. Find the elementary transformation matrices corresponding to the clementary
row transformations used in Ex. 2 of Section 2.6 and carry the matriees of that exer-
cise into the fprm (2.30) by matrix multiplication.

B. The’é’e"cerminant of a product. In the theory of determinants it is
shown that the symbol for the product of two determinants may be com-
put{éd\as the row by column product of the symhols for its factors. In our
pregent terminology this result may be staied as

 Theorem 7. The determinant of a product of two square mairices is the
product of the determinants of the factors, that s,

(24) [AB| = |A] - |B].

The usual proof in determinant theory of the result is quite complicated,
and it is interesting to note that it is possible to derive the theorem as a
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simple consequence of our theorems which were obtained independently
and which we should have wished to derive even had Theorem 7 heen as-
sumed. We shall, therefore, give such a derivation. We thus let 4 and B
be n-rowed square matrices and see that Theorem 6 states thatif [A] = 0
then |AB| = 0. Hence, let A be nonsingular so that, by Lemma 2,

A=P1...P

where the P; are elementary fransformation matrices. From our defini-
tions we see that, if E is an n-rowed elementary transformation matrinod

type 1, 2, or 3, then |B| = —1, 1, or g, respectively. Thus, if G(is,an
n-rowed square matrix and Gy = EG then Lemmas 2.3, 2.4, and 2% unply
that |Gyl = — |G, [Gl,a[Gl,respectwely, and hence IGUI - 13[ |G].
It follows clearly that, if F,, ..., E; are any elementary ‘eransfonnatmn
matrices, then |E B ... EiG| = |E ... |EBf - |G, mWé apply this re-
sult first to 4 to obiain |4} = [Plf IP | and thenvo 4B to obtain
|AB| = |P,...PB| = |Pi|. [PI [B| = Lé\[ |B| as desired,

6. Nonsingular matrices. An n-rowed squazé m\etnx A is gnid to have an
inverse if there exists a matrix B sueh that AB = BA = I is the n-rowed
identity raatriz. Clearly, B is an" wn-(ril@fv% S Ratrix which we shall
designate by A-! and thus write -

(26) AALs A4 =],
~\
Moreover, we have \

Theorem 8, A sguare walriz A has an tnverse of and only if A is non-
singular.

Forif (25) holds,,,qe apply Theorem 7 to obtain !AI [A-Y] = |T| =1,
[4] = 0. The_con¥erse may be shown to follow from (21), (22}, (23), a.nd
Lemma 2; butr%e shall prove instead the result thatif |A] 72 O then A% is
uniguely dete;mmed as the mafrix

\
(26) \; Al = Al -adjA.
This formula follows from the matrix equation
@0 A(adj A) = (adj A)A = |A] -1

by muitiplication by the scalar [4[~%, and we observe that (27) is tl}e in-
terpretation of (2.20) and (2.21) in terms of matrix product, where adj A is
our symbol for the adjoint matrix defined in (2.22).
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We now prove A—! unique by showing that if either AB = Tor B4 = |
then B is necessarily the matrix A1 of (26). This is clear sinee in either
ease |A| % 0, A= of (26) exists, A = A1l = A {4B) = {A'A)E =
IB = B, and similarty if BA = I. :

We note also that, if 4 and B are nonsingular,

(28) (AB)~* = B4+,

For (AB)(B7'A1) = A(BB)A~1 = AA = 1. Finally, if A is nonsin\gu-
lar we have O\

(29) (A7) = (4), O

For I' = I = (AA™1) = (A-1)'4’, (A1) is the inverse ofd .

A linear mapping (1) with m = » has an invers&ji@apping (2) with
n = ¢ if the product (3) is the identical mapping, thatys, if C = AB is the
identity matrix. But this is then possible if an(xi, iny if |A| 50, that is,
(1) is what we called a nonsingular linear mapping’in Section 1.9, We shall
use this coneept later in studying the equivaletice of forms,

EXERCISES
1. Show that if 4 is an n-rowed squafgmatrix of rank » — 1 5 0, then adj A
has rank 1. Hint: By (%)»m,&hmdiﬁaﬁ}ﬁ.)apgmpPAQ(Qﬂ + adj 4) = Ofor

"“ I:w—-l 0
Ho= (50
Then the first » — 1 rows pm\l - adj 4 must be zero, adj A has rank 1.

2. Use the result abgyéand (28) to prove that adj (adj A) = |Al*2d ifn > 2
and adj (adj A) = AGR%'= 2and |A| 5 0.

3. Use Ex. 13@.\(%7) to show that |adj A] = |4 |™,

4. Compu e inverses of the following matrices by the use of (26).

R _ 0 0 2 8-2 0
\»«;..\a) G%Y w (1 0 0) c)( 0 3—2)

010 2 0 3
2 3 4 111 é"ig f
d[1 2 6 e {1 2 3 b)) -
001 13 6 2 12 1
3-21 6
2-11 6 2 -5 2 —3
012 1 -1 -3 3 -1
Dl_1 1 1-9 Ol T 1—-1 0
1 ¢ 2 3 -1 1 o0 1
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5, Let A be the matrix of {d) above and B be the matrix of (¢). Compute C =
(ABy™ by (28) and verify that (AB)C = I by direct wultiplieation.

7. Equivalence of rectangular matrices. Qur considerations thus far have
been devised as relatively simple steps toward a goal which we mAY Now
attain. We first make the

DErFiNITION. Two m by n matrices A and B are called equivalent if there
exist nonsingulor matrices P and Q suck that ~

(30) PAQ = B. O\
O

Observe that P and € are necessarily square matrices of m:a,nd 7 TOWS,
respectively. By Lemma 2 both P and Q are products of elémentary trans-
formation matrices and therefore A and B are equivalentt i)’}md only if A and
B are rationally equivalent. The reader should noticeliat the definition of
rational equivalence is to be regarded here as si,zi;};[‘y another form of the
definition of equivalence given above and, while\the previous definition is
more useful for proofs, that above is the qn’a:“?hich has always been given
in previous expositions of matrix theory, We may NOw gg%lly Lemma 1 and
have the principal resuit of the pre?eﬂ'&'pfgﬁfgﬁl ary-ote

Theorem 9. Two m by n matrices are equivalent if and only 1f they have
the same rank. <

We emphasize in closing .kﬁa}, if A and B are equivalent, the proof of
Theorem 2.2 shows that, the'elements of P and @ in (30) may bhe taken {o
be rational functions, Wrth rational coeflicients, of the elements of 4 and B.

A X

D EXERCISES

G

I Compute’%trices P and ¢ for each of the matrices 4 of Ex. 1 of Section 2.6
such that P4 has the form (2.30). Hint: If A is m by », we may obtain P by ap-
plying,thb:s% élementary row transformations used in that exercise to I, and simi-
larly for,&. (The details of an instance of this method are given in the illustrative
example at the end of Section 8.}

2, Show that the product AB of any three-rowed square matrices 4 and B of
rank 2 is not zero. Hint: There exist matrices P and @ such that do = PAQhasthe
form (2.30) for r» = 2. Then, if AB = 0, we have 4,8y = 0 where By = ¢1B has
the same rank as B and may be shown ta have two rows with elements all zero.

3. Compute the ranks of 4, B, AB for the following matrices. Hint: Carry 4
into a simpler matrix A, = P4 by row transformations alone, B into By = BQ by
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column transformationg alore, and thus compute the rank of A.Bs = P(AB)Q in-
gtead of that of 4B,

12 3 3 45
) A=1{2 3 4], B=| 0 2 4
135 -113
-120 1 3 2
HAa=| 11 0}, B=| 2 6 4
-4 50 -1 -4 1 ~
3—-5 2 4 -4 10 2 8\ A\
{1-21 3 -2 8 2 4L
A=y 1 02| B 3-42
5-8 3 5/ -1 2 0N

L&

8. Bilinear forms. As we indicated at the close of GﬁEpter I, the problem
of determining the conditions for the equivalence of\two forms of the same
restricted type is customarily modified by the, imposition of corresponding
restrictions on the linear mappings which ar}a:l]owed. We now precede
the introduction of those restrictions whicly ‘are made for the case of bi-
linear forms by the presentation of certaih notations which will simplify our

discussion. www.dbraulibr ary org.in
The one-rowed matrices =~ 0 : 3
(31) $’=(513--&;xm)} ’=('y1:---:yn)

have one-columned mai};}es z and y as their respeective transposes. We
let A be the m by nmatrix of the system of equations (1) and see that this
system may be expressed as either of the matrix equations

(32) P z=Ady, o =yA’
AV ¥, =ya.

We havegalled (1) 2 nonsingular linear mapping if w = n and A is non-
smgula,i\ ‘But then the solution of (1) for #,.. ., yx as linear forms in
Z1\). ; T i8 the solution

(33) y=A%%, ¢ =2{A)T=2(47Y
of (32) for ¥ in terms of z (or ¢ in terms of #’). We shall again consider
m by n matrices A and variables #; and ¥; and shall now introduce the no-

tation
(34) x =Py
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for a nonsingular linear mapping carrying the z; to new variables s, for 4,
k=1,...,m, so that the transpose P of P’ is a nonsingular m-rowed
square matrix and ' = (4, . . ., U). Similarly, we write

(35) y=Qv

for a nonsingular #-rowed square matrix Qand o' = (v, ..., v.). We now
return to the study of bilinear forms. ~
A bilinear form f = Zzaiy, fori=1,... ,mandj=1,...,n,jsa
sealar which may be regarded as a one-rowed sguare matrix and is then.the
matrix product O

L W

W
774

(36) f=2Ay. O\
N\

Here 2 and y are given by (31), and we call the m hy nuxpatrix A the matriz

of f,itsrank the rank of . Alsoletg = 2'Bybe a bilingarforminay, . . ., Tn

and 41, . . . , Y With m by n matrix B. Then we shall say that f and g are

equivalent if there exist nonsingular linear mappings (34) and (35) such

that the matrix of the form in wi, . . . , Uy ed s, . . . , v, inbo which f is

carried by these mappings is B. But 1\{ .\5%&;}3{3}%@5’3&%{ . WP and

§ = (WP)A(QONS ' (PAQ,
so that B = PA¢ and A are e&il?ivalent. Thus, fwo bilincar forms f and g
are equivalent if and only if their matrices are equivalent. By Theorem 9 we
see that two bilinear formis mre equivalent if and only if they have the same

rank. It follows also ¥hé€ every bilinear form of rank r is equivalent to
the form "\.',\“

(37) § " s+ . e
These r{ﬁglt\s complete the study of the equivalence of bilinear forms.
3

ILLUSTRATIVE EXAMPLE
We shall find nonsingular linear mappings (34) and (35) which carry the form
f = 2zan — 3ve + o — an + Sows — 6zsn + 32y, + 192

into & form of the type (37). The matrix of f is

2-3 1
4 = (—1 0 3.
-6 3 19
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We interchange the first and second rows of 4, add twice the new first row to the
new seeond row, add —6 times the new first row to the third row, and obtain

-1 0 &
0 -3 11),
0 3-1

which evidently has rank 2, We then add the second row to the third row, multiply
the first row by —1, the second row by —3}, and oblain

] N
1 0-35 o
PA = (0 1 -4, Ay,
00 0 O
The matrix P is obtained by performing the transformations. above on the three-

rowed identity matrix, and hence 4%

.

(0—10) O

p={-1-20

1 -4 1,
N,

We continue and carry PA into PAQ of theform (2.30) for r = 2 by adding five
times the first column and ¢ times the seennd celummn of PA to its third column.

Then
www. dbr auhb{: ,cg'g,ng
Q ";‘: .(;‘)y 1 131) .
2 00 1

22\
The corresponding linear @pings {34) and (35} are given respectively by

{xl: _§M+1ia {'y1=v1+5va
\

o= —u — Fue — 4, Yz = vz oy .
Xs = 13 s =t

We verify b&(chrect gubstitution that

f= ( i‘ua + us) (20 + 1005 — 3vn — 11ug 4 v5)
) + (s + 3w + 4u) (1 + Bz — 5ty)
) + wus(—Bv1 — 300s + 32 + 11og + 19g)
= —Futn -+ e + Bugn — Juavs + watn + Fraty + dugm — Bugny - 3wy

= Ytk + Use N
as desired.

EXERCISES

1. Use the method above to find nongingular linear mappings which carry the
following bilinear forms into forms of the type (37).

a) 2zan + 3z — Tah — 2xays
B) zan — zp + vy + Ao — 3o + 20 — 2 + 25 — 3T



EQUIVALENCE OF MATRICES AND OF FORMS 51

) 2aun + 3z — s + Sown 4 2o -+ aas + 3egn — T + 20
d) 2map — oofr + 38 + o — 2w 4 3zae — 1327 + Srawye + 2an

—~ Zsyfs + 2Tsy1 + drgn — Talfe + Tays + Drayy
2. Use the method above to find a nonsingular linear mapping on 2y, 2,, 2 such

that it and the identity mapping on 4, 9, ¥s carry the following forms into forms
of the type (37).

a) —3zun + S + Tah — 2o,

B) 3oy + xn + 4ean + 2o

¢) zin — 4rie + Tys — Togh + T + ey — Talsy K¢ :\

d) 3zaye T Bewys + T -+ 2eayn + Ty — 22aye + i C N

g) —xiys + Bays + ¥ -+ Balie + 2oy — 3ways + Ty — 2oy + 3x§ya'.§. '

+ drgys + 2xp g 32y

3, Find a nonsingwar linear mapping on %, ¥, ¥ such that i an:\i\the identical
mapping on @y, Ta, 73 carry the forms of Ex. 2 into forms of the type(37). Hind: The
wmatrices 4 of the forms of Ex. 2 are nonsingular so that thg.¢orrfesponding matrices
P have the property PA = I, Then P = A, 4Q = Klhias the unique solution

Q=P PAN
4, Use elementary row transformations as abu;{e"tﬁ compute the inverses of the
matrices of Section 6, Ex. 4. wwwrcii;;fau]ib rary.org.in

5. Use elementary column transformations to compute the inverses of the fol-
lowing matrices, ~

-1 1 0 A% -2 1 0 1

0 1 ‘9 1 6 2-1
al o 3 ,:]z\\5 D4 1-3 1

-1 0N -2 ~1 0-2 2

A¥

mhad 1 —1 -3-1 0 1

&Y 3 001 1 2-1 0
94N 3 o o) Pl-a-2 1 1
R U Y S T | 3 0 1 -1
..\'.

9, Congﬂi'ence of square matrices. There are some important problems
regarding special types of bilinear forms as well ag the theory of equivalence
of quadratic forms which arise when we restrict the linear mappings we use.
Welet m = n so that the matrices A of formsf = z’Ay are square matrices,
Then (34) and (35) are called cogredient mappings if @ = P, Thenfandg
are clearly equivalent under cogredient mappings if and only if

(38) B = PAP'.

We shall call A and B congruent if there exists a nonsingular matrix P
satisfying (38). .
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We shall not study the complicated question as to the condifions that
two arbitrary square matrices be congruent but shall restrict our attention
to two special eases.

Before passing to this study we observe that Lemma 2 and Section 7
imply that A and B are congruent if and only if A may be carried into B by
a sequence of operations each of which consists of an elementary row trans-
formation followed by the corresponding column transformation. Thus
P = P, ... P, where the P; are elementary transformation matrices, B =
P,...PAP,.. P, =P,...PyP:AP)P,. .. P and so forth.s'de-
su'ed We shall speak of sur-,h operations on a matrix A as cogretient ele-
mendary transformations of the three types and shall use them (gour study
of the congruence of matrices. "\

77%&
3

10. Skew matrices and skew bilinear forms. A square matrlx A is called
symmetric it A’ = A, and skew if A" = —A. If B PIA P’ is congruent to
A then B’ = PA'P’, B is symmetric if and onlx i A ig symmetric, B is
gkew if and only if A is skew, \ ¢

If A = (ai) is a skew matrix, then e —ay for all £ and j. Hence
@i = —ay and consequently every dla.gonal element of A iz zero. We use
this result in the proof of,  librar

Theorem 10. Two n—'ro'weda icew nﬂfmﬁes are congruent if and only <f they
the same rank r. Moreover v 15 angven integer 24, and every skew matrir is
thus congruent to @ mairiz <"

O -1 0
(39) ) (It 0 0) :
N ¢ 0 0
AS
For either A/=°0 = PAP’ for every P and our result is trivial, or some
ai; # 0. We fiay interchange the ith row and first row, the jth and sec-
ond row &n&hus also the corresponding columns by cogredient elementary
transforfaations of type 1. We thus obtain a skew matrix H = (k) con-
gruentto A and with as; = R 5 0, ke = —hus, Ay = hay = 0. Multiply
thénfirst row and column of H by hm and obtain a skew matrix ¢ = (cs)
congruent to 4 and with ¢i3 = —1,¢a = 1,¢u = €22 = 0. We now apply
a sequence of cogredient elementary transformations of type 2 where we
add —c¢; times the second row of € to its jth row as well a8 ¢;x times the
first row of C to its jth row for j = 3, ..., n, and thus obtain the skew
matrix

(40) A, = (ff ?4_1), E= (‘1) _(1]).
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The matrix A, is congruent to A, A; is necessarily a skew matrix of n — 2
rows, and any cogredient elementary transformation on the last n — 2 rows
and columns of 4, induces corresponding transformations on Ay, carrying
it to a congruent skew matrix H; and carrying 4, to a congruent skew

matrix
(E' 0
0 H:}°
It follows that, after a finite nurnber of such steps, we may replace 4 bs}\
a congruent skew matrix _ O\
(41) G = diag (B, ..., H,0,...,0} z;:\

with each E; = E. Clearly, G and A have rank 2. If B alsd 13 5 skew ma-
trix of rank 2¢, then B is congruent to (41) and to 4, both“)l‘\and B are con-
gruent to (39). \

If A is a skew matrix, the corresponding bilinp.a,k\fnrm 2’ Ay is a skew
bilinear form. Hence, two such forms are equivalent under cogredient non-
singular linear mappings if and only if they haya the same rank, Moreover,
if f is a skew bilinear form of rank 2¢ it is eql;i\?alent under cogredient non-
singular linear mappings to (Z:ws —“’ﬁ%@ﬁﬁlifa.”.hprﬁr o B — Tadfr).

EXERCISES

Use a method analogous to thaﬁ,éf the exercises of Section 8 to find cogredient
Yinear mappings carrying the f ll@viﬁg gkew forms to forms of the type above.

@) Ty — wah + e — '2’1{324’1 + 3zzys — Sz

B) 2wty — 2wy — 31?{3\’-’{-' Euth + 2oays — 2oadh

) Ty — Tt + 3%3{3..’— Baxan — drgn + drys + o~ dagp

N\ + Brays — Brgys 1+ Sways — Brays
N .

11. Symmegtric matrices and quadratic forms. The theory of symmetric
matrices ig"abhsidersbly more extensive and complicated than that of skew
matricg%‘ aiid we shall obtain only some of its most elementary results. Our
prineipal conelusion may be stated as _

Theorem 11. Every symmetric matriz A s congruent to a diagonal malric
of the same rank as A.

We may evidently assume that A = A’ 7 0, and we shall prove first
that 4 is congruent to & symmetric matrix B = (hs;) with some diagonal
element h;; s 0. This is true for 4 = H if some diagonal element of 4 is
not gero. Otherwise there is some ai; # 0, @5 = @i, and ai = a5 = 0. We
then obtain H as the result of adding the jth row of A to its ith row and
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the jth column of A to its 7th eolumn, ki = a; + a5 = 284 5 0 as de-
sired. We now permute the rows and corresponding columns of H to ob-
tain a congruent symmetric matrix € with ey = ki # 0. Then we add
—eTtes times the firgt row to its kth row, follow with the eorresponding col-
umn transformation, and obtain a symmetric matrix

(42) (g“ ?4])
"N\

congruent o 4. Clearly, 4 is a symmetric matrix with n — 1 Tows. As
in the proof of Theorem 10 we carry out a finite number of suchsteps, and
it is clear that we ulfimately obtain a diagonal matrix. Itisa faatrix cquiv-
alent to 4 and must have the same rank, ,m‘

The result above may be applied to obtain a corregj ondmg result on
symmetric bilinear forms of rank 7, that is, bilinear forms f = z/4y defined
by a symmetric matrix 4 of rank . Theorem 11 thén'sfates that fis equiva-
lent under eogredient transformations to a form\\f

W

(43) axiy + . + m,a:sr\yr

The results of Theorem 11 may alsor he apphed to quadratie forms f =

f@y ooy 2a). As Wvﬁ&‘&ﬂﬂﬁa&&ﬁbﬁlﬂ{,&;@ ihis the one-rowed square matrix
product N

(44) {i%\x':‘lx = Z.xiaﬁxj

L\ Gi=1
for a symmetric me{ﬁri“x A. We call the uniquely determined symmetric
matrix A the mat(m} of f and its rank the rank of . Now in Section 1.9 we
defined the eqmvalence oi any quadratic form f and any second quadratic
form ¢ = y"By. We may then use the notations developed above and see
that f andig are equivalent if and only if A and B are congruent. For if
our ,uonémgular linear mapping is represented by the matrix equation 2 =
P’ﬁ»,\then a’ = w'P is a consequence, and f = w'{(PAP")u, f and g are equiv-
alent if and only if B = PAP’. Thus Theorem 11 states that every quad-
ratie form of rank r is equivalent to

{45) ax?-4 ...+ a2l
The form (45) is of course to be regarded as a form in 2, . . . , z, with
matrix diag {a,...,a, 0,..., 0}. However, it may be regarded as a

form in 2y, ..., & with nonsingular matrix diag {ai, . . ., @}. We shall
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call a quadratic form f = 2’Az in %, ..., z, with nonsingular matrix A
a nonsingular form, and we have shown that every quadratic form of rank r in
n tariables may be writlen as a nans'mgular Jorm in t variables whose matriz
13 a diagonal matriz.

EXERCISES
1. What is the symmetric matrix 4 of the following quadratic forms?

a) 3af + zirz 4 2025 — By + ot
b) 20y, ~ Bwsws + 23 D

¢) =} — 3Ty + 2wy — 33} O

2. Find a nonsingular matrix P with rational elements for each 0f~ﬁ1‘é'%ouomng
matrices A such that PAP' is o disgonal matrix. Determine P kg\wntmg A=
TAFP and by applying cogredient elementary transformations. }

6 1 -1 2 4 U \\
a) ( 1 14 _3) b) (4 9..‘4)‘
—-1 -3 1 1046

¢ -1 10 -8 3
¢) -1 2) www@b a-ulj&l'ary.m'g}n

2 —2 N 3-1 1
0 7 6 0—1
0 6 15 0 1
€) 2_2 o ) 0 0 2 3
3 —-3,71-3 -1 13 5

\
8 1 0 3 21 -1
(5 -5 05 2 2 1 -1
@1 01 1 Ml1 11 0
Q 0 -5 1 14 -1-10 0

¢ .\" 3

3. W!\Zthe symmetric bilinear forms whose matripes are those of (), (B, (e},
and (d) of Ex. 2 and use the cogredient linear mappings obtained from that exercise -
to obtain equivalent forms with diagonal matrices.

4. Apply the process of Ex. 3 to (¢), (f), (g), and (%) of Ex. 2 for quadratic forms.
5. Which of the matrices of Ex. 2 are congruent if we allow a.n)' complex num-
bers as elements of P#

6. Show that the forms f = 2¢ + 3} and ¢ = 2} — 2} are not equivalent under
linear mappings with real coefficients. Hint: Consider the possible signs of values

of f and of g.
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12. Nonmedular fields. In cur discussion of the congruence and the
equivalence of two matrices A and B the elements of the transformation
matrices P and @ have thus far always been rational functions, with rational
coefficients, of the elements of A and B. While we have mentioned this
fact before, it has not, until now, been necessary to emphasize it. But the
reader will chserve that we have not, as yet, given conditions that two sym-
metrie matrices be congruent, and our reason is that it is not possible to do
so without some statement as to the nature of the quantities which weallow
as elements of the transformation matrices P. We shall thus introdudee an
algebraie concept which is one of the most fundamental concefls of our

subject—the concept of a field. O
A field of complex numbers is a set F of at least two :distmet complex
numbers a, b, . . ., such thht @ -+ b, ab, ¢ — b, and a/gare in ¥ for every

g, b, ¢ # 0 in F. Exampleg of such fields are, then, the sét of all real num-
hers, the set of all complex numbers, and the set)¢f 81l rational functions
with rational coefficients of any fixed complex pimiber ¢,

If F is any field of eomplex numbers, the'gét K = F(z) of all rational
functions in « with coefficients in F is a mathematical system having prop-
eriies, with respect to rational operafions,”just like those of F. Now it is
true that even if one welélebi_nt?‘rgzstgd’ Onl}i’ in the study of matrices whose
elements are ordinal}‘yr"“aaffnpig:lcj ﬁuﬁa‘ﬁ%gg‘ there would be a stage of this study
where one would be forced to consider alse matrices whose elements are
rational funetions of #. Thus(we'shall find it desirable to define the concept
of a field in such & generakway as to include systems like the ficld K defined
above. We shall do se and shall assume henceforth that what we called con-
stants in Chapter I gud’scalars thereofier are elements of a fixed field F.

The fields we haye already mentioned all contain the ecomplex number
unity and are élosed with respect to rational operations. But it is clearly
possible to,bbtéin every rational number by the applieation to unity of a
finite nuniber of rational operations. Thug all our fields eontain the field
of all ;'&I,iéhal numbers and are what are called nonmeodular fields. The fields
called reodular fields will be defined in Chapter VI. We now make the fol-
lowing brief

DerINITION. A sef of elements ¥ 15 said to form a nonmodular field if ¥
contains the set of all rational numbers and is closed with respect lo raitonal
operations such that the following properties hold:

I.ia+by+e=a+(h+e), (ab)e = a(be) ;
II. a(b +¢) = ab + ac ; '
II.a+b=Db+a, ab = ba
for every a, b, ¢c of F.
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The difference @ — b is always defined in elementary algebra to be a solu-
tion z in F of the equation

{46} zr+b=a,
and the guotient a/b to be a solution ¥ in F of the equation*
(47 yh=a.

Thus our hypothesis that F' is closed with respect to rational operations
ghotld be interpreted to mean that any two elements ¢ and b of F deterfoine
s unique sum a@ -+ b and a unique product ab in ¥ such that (46))lias a
solution in F and (47) has a solution in F if b = Q. In the authpr'fg Modern
Higher Algebra it is shown that the solutions of (46) and (47)\are unique.
In fact, it may be concluded that the rational numbers gand 1 have the
properties :

~NY;
(48) at+0=0al=a, aqui,\
for every a of ' and that there exists a uniquegolutionz = —aofz +a =

0 and s unique solution y = b~ of 4b = Idor b = 0. Then the solutions
of (46) and (47) are uniquely determingdiyydprachibraty $Jpgn= ¢b~".

We also see that the rational nuniper —1 is defined so that (—1) +
1 =0,and thus (—1 + 1)a = 0 s@= 0, whereas (-1 +He = —1-4a +
l:g= —1.qg4 a. Hence —ﬁ;“% —1 - a. It is also true that —{—a) =
t, {~a)(—b) = ab for every'gand b of a field F.

;" EXERCISES
1',1‘% o, b, and ¢ range’over the set of all rational numbers and F ch.sist of all
nshrices of the following types. Prove that F is a field. (Use the definition of ad-
dition of matricegin (52).)

™ a & G
) (g —2&) 5 (a -;)- b 4b b) ) (2c ! b)
9, ¢ —b e % 2 a

2. Show that if a, b, ¢, and d range over all rational numbers and {2 = —1, the
%t of all matrices of the following kind form a quasi-field which is not a field.

(a 4 b 3+ dz'))
c—di a—b ’
'*NOtB that in view of ITI the property II implies that (b + ¢la = ba + cq, and the
fistence of a solution of (46) is equivalent to that of b+ = @, of (47) to that of
U = a. But there are mathematical gystems calted quasi-fields in which the law ab = be
agf; not hold, and for these systems the properties just mentioned must be made 88
itiona] assumptions.
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13. Summary of results. The theory completed thus far on polynomials
with constant coefficients and matrices with scalar elements may now be
clarified by restating our principal results in terms of the conecept of a field.

We observe first that if f(z) and g(z) are nonzero polynomisls in = with

coefficients in a field F then they have a greatest common divisor d(z) with
coeflicients in F, and d(z) = a(z)f(z) + b(x)g(z) for polynomials a(x), b(z)
with coefficients in F.

We next assume that A and B are two m by » matrices with elements in
a field ¥ and say that A and B are equivalent in F if there exist nonsingular
matrices P and § with elements in F such that PAQ = B. Then\:@ and B
are equivalent in F'if and only if they have the same rank. Mog€gver, corre-
spondingly, two bilinear forms with coefficients in F are eguivalent in ¥ if
and only if they have the same rank. Since the rank of @matrix (and of a
corresponding bilinear form) is defined without refereﬁcé to the nature of
_the field F containing its elements, the particular ¥¢hosen to confain the
elements of the matrices is relatively unimportaggt.for the theory.

If A and B are square matrices with elements'in a field F, then we call 4
and B congruent in F if there exists a nonsibgular matrix P with elements
in F such that PAP’ = B. Similarly, we 84y that the bilinear forms z’'Ay
and z'By are equivalent in 1F ynder cog eélj%ent fransformations* if 4 and B
are congruent in F."When 4" = —)j’lt 6 matrix A is skew, and every ma-
trix B congruent in F to A is gkéw, two skew matrices with elements in F
are congruent in F if and onlg i they have the same rank. Hence, the pre-
cise nature of F is again unimportant.

Let A = A’ be a symmetric matrix with elements in F so that any ma-
trix B congruent In E\t6 A also is a symmetrie matrix with elements in F.
Then two corresponding quadratic forms s’Az and #’'Bz are equivalent in
F if and only if/d"and B are congruent in ¥, Moreover, we have shown
that every symmetric matrix of rank r and elements in ¥ is congruent in F
to a diagq‘n}l matrix diag {ay, ..., a,, 0,..., 0} with ¢; 0 in F and
that correspondingly every quadratic form z’Az is equivalent in F to
agﬁ’-{%f. . + a,rt

"THe problem of finding necessary and sufficient conditions for two quad-
ratic forms with coefficients in a field F to be equivalent in # is one in-
volving the nature of F in a fundamental way, and no simple solution of this
problem exists for F an arbitrary field. In fact, we can obtain results only
after rather complete specialization of F, and these results may be seen to
vary as we change cur assumptions on F,

* We leave to the reader the explicit formulation of the definitions of equivalence in

F of two forms, of two bilinear forms, and of two bilinear forms under cogredient linear
mappings, where all the forms considered have elements in F.
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The simplest conditions are those given in

Theorem 12. Let F be a field with the property that for every a of F there
extsts a quantily b such that b® = a. Then two symmelric mairices with ele-
ments wn F are congruent in F if and only if they have the same rank.

For every A = A’ of rank r is congruent to 4, = diag {ay, ..., a, 0,
) 0} for a:# 0 and a; = biforb, > 0in F. Then if P = diag {§7%, ...,
B1,0,...,0}, PAP = diag {I,,0}. If also B = B’ has rank r, then B is
also congruent in ¥ to diag {I,, 0} and hence to 4. The converse folldws
from Theorem 2.2, ' O\

We then have the obvious eonsequences, R\

CoroLLary 1. Two symmetric motrices whose elements are complex num-
bers are congruent in the field of all compler numbers ¥f and only uf they have
the same rank. RS

CoroLLARY II. Let ¥ be the field of either Theorémpd2 or Corollary I.
Then two quadratic forms with coefficienis in F are e@ tvitlent in F if and only
if they have the same rank. Hence every such fqm of rank r is equivalent
wn ¥ to

“9) P 'x, 7
wtwydbraulibrary org.in
14. Addition of matrices. There i5 ghe other result on symmetric matrices

over an arbitrary field which will be ‘seen to have evident interest when we
state if. Its proof involves the Qomputa.tlon of the product of two matrices

o aE) )

which have been 'gartltmned into two-rowed square matrices whose ele-

ments are veciafigular matrices. If these matrices were one-rowed square

Mmatrices, thact% to say in F, we should have the formula

51) N N\ 4B = ABy 4 A:Bs ABs + AzBﬁ) '
\ ) T \AgBi+ ABy AsBy+ AB,

But it is also true that if the partitioning of any 4 and B is carried out so
that the products in (51) have meaning and if we define the sum of two
matrices appropriately, then (51) will still bold. Thus (51} will have major
importance as a formula for representing mafrix computamons
We now let 4 = (a;;) and B = {(by), where ¢ =1,... ,mand j =1,
. » 7, 50 that A and B are m by » matrices. Then we deﬁne

(52) S=A4+B=_(x), 8i=t;+Dby
G=1...,mj=1...,n0).
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We have thus defined eddilion for any two matrices of the same shape such
that A + B is the matrix whose elements are the sums of correspondingly
placed elements in A and B.

The elements of our matrices are in a field F, and a;; + by = b;; + a.;.
If ¢ = (es) is also an m by » matrix, we have (ai; -+ bi;) + ¢; = ay; +
(b:; -+ ¢:;). Hence we have the properties

33) A+B=B+A, U@HB+C=A4A+B+0).

We observe also that if 0 is the m by n zero matrix, then A(Hh0 = 4,

A+ (=1-4)=0. O
Now let C = (¢;z) be any n by ¢ matrix. Then (,.}ﬂ
(54) (4 +B)C = 4C +BC. <O

For this equation is clearly a consequence of ,t\h@ corresponding property

of F, that is, of R&S

(55) (@i + bideqn = asfd+ oo .

We have thus seep.fhathadditiesiobrgatrices has the properties (53) al-
ways assumed for addition of méoélements of cur matrices and that the
law (54), which we call the digteibutive law Jor malriz addition and multipli-
eation, also holds, Clearlyi&bD is a matrix such that DA is defined, then
similarly we have N\

(56) \ Di4 + B) =DA + DB.

Observe, ho\w}x;er, that if » > 1 and 4 and B are n-rowed square mat-
rices, then,i}{A + B| and [A| + | B} are usually not equal. For example,
if 4 andB.are equal, then |A] + [B| = 2|4 | while |4 + B| = |24] =
2 |Ai\ )

Lat"us now apply our definitions to derive (51). We let A = (a;) be an
m Dy » matrix, B = (b;) be an » by ¢ matrix, and 4, be an s by ¢ matrix,
so that 4, = (ay) but now with ¢ =1,...,sand j = 1,...,t Then
(51) has meaning only if B, has ¢ rows, and we thus assume that B, is a
matrix of ¢ rows and g columns. Qur partitioning is now completely de-
termined and necessarily As has s rows and n — ¢ columns, A, has m — &
rows and ¢ eolumns, A, has m — s rows and n — ¢ ¢olumns, B, has ¢ rows
and ¢ — g columms, B; has n — ¢ rows and g columns, B, has n — { rows
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and ¢ — g columns. The element in the 7th row and &th column of 4 B may
clearly be expressed as

ft £ n
Zaﬁ-b;k = zaﬁbﬁ + Z @b

i=1 i=1 LIRS
E=1...,mk=1,...,0).

N\

But this equation is equivalent to the matrix equation given by A

£\
6 A= Dy, B=(g), AB=DE+ DR’

where we define Dy, D,, B\, E; by 'm"\g'

6 Do~ (4), n=(§), B-GyEY BE=3.B).

R
Moreover, we may obtain (51) from (57) by%iniply using the ranges 1, 2,
..,sand s +1,...,m for ¢ separately; ‘as well as 1, 2, ..., g and

g+ 1,...,qforjseparately. In ma@ni;ﬁlangﬁ@géfw@!ﬁ% used {58) and
computed \y

& () @8 = (Afz\i\ fi“?) (4)es 50 = (05 55)

as the result of partltlon of matrices and then have used (57) and addition
of matrices in (59) td gwe (51).

We shall now apply the process above to prove the following theorem on
symmetric majrices mentioned above.

Theorem 18: Let A, and B, be r-rowed nonsingular symmetric matrices
with elements’ in ¥, and A and B be the corresponding n-rowed symmeiric

matm‘c&i y
A O _{B4+ 0
(60) A=(0 0), B~(0 0)‘

of rank 1. Then A and B are congruent in F if and only if A, and B, are
congruent in F.

Forif A; and B, are congruent in F there exists a nonsingular matrix Py
such that P;,4,P{ = B,. Then P = diag { P, I} is nonsingular, and com-
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putation by the use of (51) gives PAP’ = B. Conversely, if PAFP’ = B for
a nonsingular mafrix P we may write

_{P1 P,
P= (P s P 4) '
where Py is an r-rowed square matrix, and we shall have

o (PL Pg r_p (AP AP\ _ (P AP PAR,
P (3 5) Pap =P (g7 0T = (R PA )
But. then B; = P14, P, and P, must be nonsingular smee “|By| =

|Pi] » [A4] - |P,] 5 0. Hence B, and A, are congruent mI"

The result above thus states that, if f and g are quadratlc forms with
coefficients in F so that f and g are equivalent onlw ,1f}hey have the same
rank r, then f may be written ag a nonsingular form fo}t r variables, g may be
written as a nonsingular form g, in » variables a{\?i finally the original forms
fand g are equivalent in F if and only if f; and o are equivalent in F,

ORAL EXERCISES
1. Compute 4 + Bif

Ww dgrauhb%ga.l‘y OLgm 1 7 g
W A=| 1 8 2), B=(-2 1—5)

—%m‘\S 4 4 3 -1

/<3 4 5 -3 5 3
HAZh 5-1 2}, B=| 4-11
SO\ 3 11 5 2 1

2. Verify thaghﬁr B)Y = A’ 4+ B’ for any m by n matrices 4 and B.

3. Bhow tk\{at“ every n-rowed square matrix 4 is expressible uniquely as the sum
ofa symmetcrm matrix B and a skew matrix ¢, Hint: Pat 4 = B + ( with B = B,
—C’M & eompute A’, and solve.

4
h. Real quadratic forms, We shall close our study of symmetric mat-
rices and hence of quadratic forms with ecefficients in ¥ as well by consider-
ing the case where ¥ is the field of all real numbers. Let then f = z’Ax
have rank r so that we may take f = 22+ ... -+ a2 for real a; = 0.
We now call the number of positive a: the index ¢ of f and prove
Theorem 14. Two guadratic forms with real coefficients are equivalent in

the field of all real numbers <f and only if they have both the same rank and the
same index,
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For proof we observe, first, that by Section 14 there is no loss of generality
if we assume that f = 2’Az where A is a nonsingular diagonal matrix, that
is, r = n. Moreover, there is clearly no loss of generality if we take 4 =
diag {di, ..., dy —dus, ..., —d;} for positive d;. Then there exist real
numbers p; # 0 such that p? = d;, and if P is the nonsingular matrix diag
{pY, . .., -t} then PAP’ is the matrix diag {1,...,1, —1,..., —1}
with ¢ elements 1 and r — £ elements —1. Thas, f is equivalent in F to,

{61) @+ .+ — @+ D).

N\
O\
Now, if g has the same rank and index as f, it is equivalent in F 1;01(%1) and

hence to f. Conversely, let g haverank r = 7 and index s so thatpis equiva-

lent in F to < Is

(62) @ a2 = Gt +\z§)l ’

Oy
We propose to show that s = ¢, There is clearly holoss of generality if we
agsume that s = ¢ and show that if s > { we'abrive at a contradiction.
Hence, let s > ¢ Our hypothesis that fhe form f defined by (61) and
the form g defined by (62) are equitral%}ﬁ%qat@@ml}ﬁ@}%jmpﬁes that there
exist real numbers d;; such that if welgubstitute the linear forms

(63) Ty = d:{@l + ...t diuyn (3'__ ..., n) H
)
in f=flzg, ..., we‘th;}’ain as a result (34 ... +98) — @G+
e ). Putr, =ap 5. =x, = 0and Y1y = ... = Ya = 0in (63)
and consider the resulting ¢ equations
_ A
{64) \:“}." dan + ...+ duys =0 G=1,...,0.
O\

These are {inear homogeneous equations in s > ¢ unkhowns, and there
exish real pumbers t1, . .., v, not all zero and satisfying these equations.
The r(hnéining n — { equations of {63) then determine the values of z; as
certain numbers u; for j =t -+ 1,...,n; and we have the result & =
FO,0,...,0, ..., us) =03+ ...402>0 But clearly h =
= (e + ... -+ u2) £ 0, a contradietion.

We have now shown that two quadratic forms with real eoefficients and
the same rank are equivalent in the field of all complex numbers but that,
if their indices are distinet, they are inequivalent in: the field of all real
numbers. We shall next study in some detail the important special case
t = r of our discussion.
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A symmetric matrix A and the corresponding quadratic form f = z'Ax
are called semidefinite of rank r if A is congruent in ¥ to a matrix

al, 0
(" o)

for @ ¢ 0 in F. Thus f is semidefinite if it is equivalent to a form a(z} +
.+ z¥). Wecall A and f definite if + = n, that is, 4 is both semidefinite

a,nd nongingular, Q.
If F is the field of all real numbers, we may take & = 1 and callhd.and f
positive or take ¢ = —1 and call A and f negative. Then A and¥ are nega-
tive if and only if —A and —f are positive. Thus we may, and shall re-

strict our attention to positive symmetric matrices and pdsmve quadratic
forms without loss of generality. &

If fa, . .., z.) is any real quadratic form, we have geen that there
exists a nonsmgular transformatlon (63) with real {Fe; such that f = % +
oy — (e ). If ey, . .., cq 878 any real numbers and

1.f we pul z; = ¢;in (63), there exist umque solhtmns #; = d; of the result-
ing system of linear equations, and the d; ay readily be scen to be all zero
if and only if the ¢;are all zero. Nowifif<r, wehavef < Ofory, = ... =

¥ = G, yoa = 1, fle v dha-,a)lhbﬂ.rﬁungmrscly, if fley, . . ., ) < 0, then
t <r. Tor otherwise f= ¢ RS8N .+ ¢ flon,...,e) =i+ ... +
a2z 0. If t = r < n, then weput yr4y = 1 and all other y; = 0 and have
¢, - - - ; €x 10t all zero suchs Bhat fey, . .., ) = 0. Henee, if fe, . . -,
¢,) > Oforall real ¢; not &llz€ro, the form f ig positive definite. Conversely,
if f is positive definite’we have f =42+ ... + 942 floy, . .., 6.) = &2 +

. +di > 0 for al{ d; not all zero and hcnce for all ¢; not all zero. We
have proved

Theorem 154 real quadratic form £(xy, . . . , x,) is positive semidefinite
if and only\t ((:1, <« vy Ca) = 0 for all real ¢, is positive definste if and only
if £y, . ") > 0 for all real ¢; not all zero,

A&a bonsequence of this result we shall prove

Theorem 186. Every principal submalriz of a positive semidefinite matrix
1§ positive semidefinite, every principal submatriz of a positive definite matriz
5 positive defindte.

For a prinecipal submatrix B of a symmetric matrix 4 is defined as any
m-rowed syrametric submatrix whose rows are in the 4,th, . . . , %,th rows
of A and whose corresponding columns are in the corresponding columns
of A. Putzy = (2, ..., #4,) so that g = 2Bz, is the quadratic form with
B as matrix, and we obtain g from f by putting z; = 0 in f for j # %
Clearly, if f = 0 for all z; = ¢;, then g 2 0 for all values of the z;;, and
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hence B is positive semidefinite by Theorem 15, If A is positive definite
and B is singular, then g = 0 for z;, not all zero, and hence f = 0 for the
z; above all zero and for the z;, not all zero, a contradiction.

The converse of Theorem 186 is also true, and we refer the reader to the
author’s Modern Higher Algebra for its proof. We shall use the resulf just
obtained to prove

Theorem 17. Lel A be an m by n mairiz of rank v and with real elements.

Then AA’ ts a positive semidefinite real symmetric motriz of rank 1. N\
For we may write . o
2\, A
— I. 0 o Ql Q‘E) \\
a=r(f 0)e, @ -(Qz o) A

where P and @ are nonsingular matrices of m and n mwh respectively.
Then Q' is a positive definite symmetric mafrix, and we parfition QQ' so
that @, is an r-rowed principal submatrix of Q. B},Theorem 16 the ma-
trix @ is positive definite, \~

ww'dbraullbl ary. 01 g.in

is congruent to the positive senudeﬁmte matrix ¢ of rank r and hence has
the property of our theorem. w“

EXERCISE

What are the ranks and.nhlces of the real symmetric matrices of Ex. 2, Sec-
tion 117

~
\:



CHAPTER 1V
LINEAR SPACES
1. Linear spaces over a field. The set V, of all sequences

(1} %= {(c1,...,0Cn)

N\
may be thought of as a geometric n-dimensional space. We assume the
laws of combination of such sequences of Section 1.8 and call x&a “péint or
vector, of V,. We suppose also that the quantities ¢; are in a fixed field F
and call ¢; the ith coordinate of u, the quantities ¢y, . . ., Ch ‘the coordinales
of u. The entire set V, will then be called the n-dimet{siénal linear space

N\

over F. )
The properties of a field F may be easily seen t{ximply that
N
(2) B+ +w=u+(r+w), AT =+ u

S

(3) a{bu) = (ab)u, w(\;zw—!al?gu = au,+:bt},,, a(u + v) = aqu + av

aulibracyserg.in

for all ¢, b in F and all vectors u, v, W of V,. The vector which we designate
by 0 is that vector all of whose coordinates are zero, and we have

@ W HOSN,  ut (—u) =0,

where —u = (;cx, . ...~,~\—c.,). Then

(5) OuéO, leu=u, 4= —1-u.

Note that t. :ﬁist 0 of (5) is the quantity 0 of F, and the second zero is the
zero vector {(We shall use the properties just noted somewhat later in an

abstract définition of the mathematical coneept of linear space, and we leave
the ve(iﬁ‘ca.tion of the properties (2), (8), (4), and (5) of ¥, to the reader.

2. Linear subspaces. A subset L of V., is called a linear subspace of V.. if

au + by is in L for every « and b of F, every » and » of L. Then it is clear
that L containg all linear combinations

(6) ¥ =am + ...+ Gulin,

for ¢;in F, and w;in L.
66
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" We observe that the sej of all linear combinations (6) of any finite num-
ber m of given vectors, w, . . ., %, i8 a linear subspace L of V, according
to this definition. If now L is so defined, we shall say that Uy . v vy U
span the space L and shall write '

M L= {u, ..., um.

It is clear that, if e; is the vector whose jth coordinate is unity and whose
other coordinates are zero, then ey, . . ., e, span V,.

The space spanned by the ZEro vector consists of the zero vector ‘alone
pnd may be called the zero space and designated by L = {0}., T what fol-
lows we shall restrict our attention to the nonzero subspaces" & of V., and,
for the time being, we shall indicate, when we call L a Imaa.r gpace over F,
that L is a linear subspace over F of some V, over FN

3. Linear independence. Qur definition of aﬁh\e'ar space L which is a
subspace of V, implies that every subspace & gontains the zero vector, If

L="Aw,...,uz},then 0 = O + ... -I—Qum Hence the zero vector of
L is expressible in the {form (6) in at leaghithin ongmvrayyyWegshall say that
Upy o . ., Uy are linearly independent IpSF or thab u, . . ., un are a sed of

linearly independent vectors (of V, over F), if there is no ofher such expres-
sion of 0 in the form (6). Thug)a, . . ., t, are linearly independent if it
is true that a linear combimation @y -+ ... + Gutm = O if and only if
Gr=ay=...=a,=0xM%, ..., unsrenot linearly independent in F,
we shall say that they are lincarly dependent in. F.

A sef of veetors U GA -, U BT€ DOW SN to be linearly independent in F
tf ond only if the expression of every u of L = {us, . . ., Un} in the form (6)
t8 tnigue. Fo his property clearly implies linear mdependence a8 the spe-
cial case u £\0. Conversely, if uy, . . . , tim are linearly independent and

= Qyuy -{- o Gutm= Brtis + . . . + bolin, then 0 = {a: — b)w +

+‘(G:m m)um, a; — b; = 0, a; = b; as desired. We now make the

DmFINITION LetL = {uy,...,un) overFanduw, ..., Un be linearly inde-
pendent in ¥, Then we shall call wy, . . . , Un & basis over F of L and indicale
this by writing

(8) L=U1F+---+umF
It is evident that V, = eF + ... + e.F. But we may sctually show

that every subspace L spanned by a finite pumber of veotors of ¥a has &
basis in the above sense. Observe, first, that the definition of linear inde-
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pendence in case m = 1 is that au = 0 only if @ = 0 and thus that » £ 0.
Then let w,, ..., u. be linearly independent veetors of V, and u 5£ 0 be
another vector. Then either w,, . . ., %, u are linearly independent in ¥ or
ay + . ..+ au- + ase = 0 for a; not all zero. If a4 = 0, then au +

. + a,u, = 0, from which a; = . . . = &, = 0, a contradiction. But then

= (—agla)u, + .. . + {(—az'a)u, is in {wy, . . ., . }. It follows that,
if 1, ..., 4. are any m distinet nonzero vectors, we may choosc some
largest number r of vectors in this set which are linearly independent in F
and we will {hen have the property that all remaining vectors in the el are
linear combinations with coefficients in F of these r. We state thisresilt as

Theorem 1. Let 1. be spanned by m distinet nonzero vectors }ll; D, s U,
Then L has a basis consisting of certain v of these veclors, 1 <S¢ €m.

7Ny
%

EXERCISES .{\" '

1. Determine which of the following sets of three \{Qtors form a basis of the
subspace they span. Hint: It is easy to see whether&ome two of the vectors, say
u; and u; are linearly independent. To see if wuy Qua\us are linearly dependent we

write uz = zt + yue and solve for x and . ¢ ‘ \
ay wm = (1,3, —“B}w_dbraulmwﬁ?fgg’hz), ug = (1,1, 6)
B w=(31,2), w =13, us = (1, =1, 0)
ey wm=(-1,-11), &H;";(B’z’ 1), u = (7,3,9)

4 m = {1, -2 —1, Q‘;\“uﬂ =, -1,1,8, uy = (0, —1, =3, 1

E) Hy = (1) 11 1: _.1)‘1 U = (2) 2}2r _2)) Uy = (1:2)31 4)

f) U = (1"—1.;1: ;1)! Ur = (]-r 1) 11 0)) Uz = (5; '_]-: 5) _3)
o\

2. Show that ﬁ‘:é' space L = {w, us, us} spanned by the following sets of vectors
is Vi Hint;{Ihbvery case one of the vectors, say u, has first ecordinate not zero,
and L GOHI:’«&I'HS U — Tothy = (U, Dy, €2), U3 — g1 = (Q, ba, ¢s). Some Linear combina-
tion i th\ese two quantities has the form (0, 0, d) and L contains e, = (0, 0, 1), It
is eéﬂv‘to show then that L contains &; = (0,1, 0) and e, = (1,0, 0), L = Vs

a’) i = (1 2; 3) ¥ Uy = (2: 3: 1) ] Uy = (_1! 3! 2)
b) Uy = (0! 11 8) ' Up = (1) _31 6) ' Uy = (1r '_1! 23)
Q) w=032, w = (0,2,1), s = (1, 5, 4)

3. Determine whether or not the spaces spanned by the following sets of vectors
4, u coincide with those spanned by the corresponding i, v.. Hint: I L. =
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{“1; 'u,g} = Iy = {Ul, ‘02}, there must exist solutions £y Lz, Tz, Ta of the eqﬁatigns
1 = Tyt + Tz, 2 = Tyl + Tk such that the determinant zz — 2o 3 0,

ﬂ‘.) U1=(3;"1:2,1)1 1"2":(114;6;1)’
p= (7, ~11, ~6, 1), v = (7,2 10,3)

b)_‘lil:(l, 2, -1, 2): Uz = (112:314)’
n= (1,2 ~13, ~4), v =(0,0,4,1)

C) Uy = (1: _]J 2, -3}, Uy = (21 -2,4, _'6}-":

n=(3 -3,6 -9, = {4, -4, 8 -9 ,\‘\
d) W = (11 —lr 01 3) ] Uy = (2) 1} 0) 1] ] . ;.\ ‘

n=(=1,~212, n=@ —206N
O w=(1,-201, w=E-LL0, N\

by = (3; _31 1! 1) ¥ = (_11 _"I"'_ 1) 1)

o

Yy w=10(,01, -2}, u = (0, 1, 12,,

n=1(2 —24, —8), <1, 1,0,0)

4, The row and column spaces ofwm&ﬂ%’“iﬁbé HNROHiin the principal
theorems on the clementary propertlesof finear spaces by connecting this
theory with certain properties of matrmés which we have alre&dy derived.
Let us consider a set of m vectors\

(9) I&}\& (G.l,...,ain) (ﬁ:]_,...,m),

of V,over F. Then we m@y regard w; as being the ¢th row of the correspond-
ing m by » matrix 42 (a;;} and the space L = {uy, ..., Un} as being
what we shall call thérow space of A. Thus every m by n matrix defines a
linear subspace oW, every subspace of V, spanned by m vectors defines
a corresponding # by n matrix.

If P =.(pp) is any ¢ by m matrix, the product P4 is a ¢ by n matrix.
The jth sgordinate of the veetor

(10) Wi = Puth '}‘ - +pkm.um

18 puty; + . . . 4 Pimil,;, that is, the element in the kth row and jth col-
umn of P4, Hence the kth row of PA is that linear combinaiion of the rows
of A whose coeflicients form the kth row of P.

We have now shown that every row of PA is in the row space of 4. It
follows that the row space of PA is contained in that of 4. 1f P is nensingu-



70 INTRODUCTION TO ALGEBRAIC THEORIES

lar, then the result just derived implies that the row space of A = P-1(PA)
is contained in the row space of PA and therefore that these two lincar
spaces are the game, Thus we have

- Lemma 1. Let P be an m-rowed nonsingular matriz. Then the row spaces
of PA and A coincide,

In the proof of Theorem 3.6 we used the matrix product equivalent of
the elementary transformation Theorem 2.4, and we shall now state this
theorem as the useful - ‘ :

LemMa 2. Let A be'in m by n matriz of rank r, Then there exist nonsfhgular

matrices P and Q of m and n rows, respectively, such that O\
. Ry
(1) PA = (0) AQ=(H 0), \°

"
where G and H have rank v, G 1s an r by n matriz; Hﬁ an m by ¥ matriz,

We use (11) and note that the rows of @ diffenffom those of PA only in
zero rows. Then the rows of ¢ span the raw’,‘ﬁ)ace of PA, By Lemma 1
we have o\

Lemua 3. The row spaces of G and A{goincide.

We shall use this result in the proehof _

Theorem 2. The r rowﬁ‘“&y"‘@’w*&?‘%é’@égdf the row space of A. Any
r + 1 vectors of the row spuce of Aare linearly dependent in F.

For we may designate thestows of G by vy, . . . , »,. Our definition of @
implies that there is no losdof generality if we permute its rows in any de-
gired fashion. Thus, &y + . . . + bs, = 0 for b; in F not all zero, we
may assume for conwenience that b; £ 0. The determinant of the r-rowed
gquare matrix .\“i"

7P
a2 PEE) PmGb), R=01)

2 S

is clearly &;, and hence P is nonsingular. Then PG is r-rowed and of rank .
But' this is impossible since bw; 4 . .. + b, = 0 is the first row of PG

nce the rows of G are linearly independent in 7, they span the row space
of G and of A, they are a basis of the row space of A.

Assume, now, that wy = by + ... + by, for k = 1,...,r+ 1,80
that w; are any r 4 1 vectors of the row space L = o F + ... -+ o Fof A.
Define B = (b:;) and obtain w; as the kth row of the = + 1 by # matrix
BG. By Theorem 3.6 the rank of BG is at most r, and by Lemma 2 there
exists a nonsingular (r + 1)-rowed matrix D = (d,;) for g k=1...,
r -+ 1, such. that the (» 4 1)st row of D(B@) is the zero vector. But then
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drity 101 - o oty ey = 0, the dyy, i form & row of the nonsingu-
lar mattix D and cannot all be zero, the vectors o, . .
dependent in . This proves Theorem 2.

We now apply Theorem 1 to obitain

Theorem 3. The matriz G of Lemma 2 may be foken o be o submatrix of A.
The integer v of Theorem 1 is in fact the rank of the m by n malriz whose {th
row 15 Ui A

Forlet 4 be ag m by n matrix whose ith row is u, gzz,nd let r be the integex
of Theorern 1, the rank of 4 be s. After a permutation of the rows of A )if
necessary, we may assume that «;, . . ., #.are a basis of the row spageof 4.
Then wy = b+ . .. + buttr for bin Fyand k = r + 1, . ym. The
matrix P given by e \ ¢

-y Wey are linearly

I 0 NS
{13) PZ(B: I_)’ B = (—bw), \
D
is nonsingular, and it is clear that if x\ /
(251 »,”" > '
"W ’fa;f:clbrauljbl'ary.org,in
(14) ¢ ={ Y
N

then P4 is given by (11). Ij;}e}lows that sistherank of G, s <r. If s < r
we apply Lemma 2 to ohtain a nonsingular r-rowed matrix D = (dg) such
that the rth row of DB\ 0, the rth row of D is not zero, duw + . .. +
I, = 0 contrary, fgrour hypothesis that i, . .., 4 are linearly inde-
pendent, This cbxi{;}ietes our proof.

We may ngﬁ}btam the principal result on linear subspaces of V..

Theorem 4. Every linear subspace L over F of V. over F has a basis. Any
wo bases of1, have the same number ¥ < 1 of vectors, and we shall call v the
wder oj"\L over I, '

For V, = etF + ... + &, F, and by Theorem 2 any n + 1 veetors of
7. are linearly dependent in F. Thus any linear subspace L over F of ¥,
ontains at most » linearly independent veetors. It foilows that there
tists a maximum number r < = of linearly independent vectors uy, . . ., U.
1 L, and that u, w, . . . , u, are linearly dependent in F for every » of L.
¥ the proof of Theorem 1 the vector u is in {my, ..., w}, L = wmF +
.. 4+ uF. Butifalso L = wF 4. .. + t,F, then Theorem 2 implies that
< r and similarly that r < &, r = s is unique.
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In closing this section we note that the rows of the transpose A’ of A
are uniquely determined by the columns of 4 and are, indeed, their trans-
poses. Thus we shall call the row space of A’ the column space of 4. It is
8 linear subspace of V.. We call the order of the row and column spaces
of A, respectively, the row and column ranks of A. By Theorem 3 the rank
of A is its row rank. Also A and A’ have the same rank and we have proved

Theorem b. The row and column ranks of @ matriz are equal to its rank.

Q"
EXERCISES

1. Solve Ex. 1 and 2 of Section 3 by the use of elementary tramiformatlons to
compute the rank of the matrices whose rows are the given vectors

2. Form the four-rowed matrices whose rows are the vectors ul, ug, w, g of Ex. 3,
Bection 3. Show thus that L, = {w, w} = Ly = {n, vz}".i‘f\ﬁnd only if the ranks
of the corresponding matrices A are equal to the order.of\the subspace Ly, that i i,
the rank of the matrices formed from the first two ws of each A.

3. Find a basis of the row space of each of thb\followmg matrices, the basia to
consist actually of rows of the corresponding; mga.trlx

12:i W%ngb ulfbm,r;y 015{ m_g “‘:' _(1] i
| 2-3-11 | »l -2-1 o 3
47 114 0 4 -1 2
2 -3 —1 I\ | 2 1 2 -2
\
-1 p} 1 ’ 12-1 3 ¢
0.\’—’.1" 1 1 3 & 1 0 2
£) 2y3 0 -1 d) i1 3 —6 —6
S5 10 o 47 0 3 6
AV 23 | 10 715 —18
4, ;[,;gi A be a rectangular matrix of the form
) Ay A,
N\ (Aa A-i) !

where 4, is nonsingular. Show that then there exists a nonsingular matrix P such
that

_ {4y A4,

PA= (5 4 ) .

Give slso a simple form for P. Hint: Show that the rows of Aj are in the row space
of 4,.
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5. Let the matrix of Ex. 4 be either symmetric or skew. Show that the choice

of P then implies that
T
PaP = (5" 3)-

Show also-that, if the order of A, is the rank of A, the matrix 4; = 0.

B. The conceptof equivalence. In diseussing the properties of mathemati-
cal systems such as fields and linear spaces over F it becomes desirable
quite frequently to identify in some fashion those systems behaving exastly
the same with respect to the given set of definitive properties under’con-
sideration. We shall call such systems equivalent and shall now proceed fo
define this conecept in terms of that of funchion. &N

Let G and ¢ be two systems and define a single-valued' funetion f on G
to /. In elementary mathematics it is customary to.ca}l G the range of
the independent variable and G the range of the dependent variable. How-
ever, it is more convenient in general situations’t-géay that f is & funetion
on @ to ' or that f is a correspondence on G t0.G\ Then f is given by

(15) = awﬁ\;jé%l)‘auljbrary.or g.in

(read g corresponds to g') such that eyery element g of G determines a unique
corresponding element ¢’ of 7. In elementary algebra and analysis the sys-
tems & and G’ are usually takén to be the field of all real or all complex
numbers and (15) is then given by a formula ¥ = f(z). But the basic idea
there is that given above,c?% corrcspondence (15) on G to 7. This concept
may be seen to be sufficiently general as to permit its extension in many
directions. O\

Suppose nowj@a}f(ﬁ) is & correspondence such that every element g’ of
@ is the corrgspending element f{g) of one and only one g of G. Then we
call (15) a gre-to-one correspondence on G to G, It is clear that (15) then
deflnegsj\af si;cénd one-to-one correspondence

\

(16) fg) =g -4,

which is now on @’ to &, and we may thus call (15) a one-to-one correspond-
ence between (3 and G’ and indicate this by writing '

a7 ge—s g .

Note, however, that, if G and & are the same system, the funetions (15)
and (16) are, in general, distinct. Thus we may let G be the field of all real
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numbers and (15) be the function z— 2z, so that (16) is the funetion
z — gz, Of course, if G and @ are distinet it is not particularly important
whether we use (15) or (16) to define our correspondence.

We proceed to use the concept just given in constructing the fundamental
definition of this section, that of equivalence. Let us consider two mathe-
matical systems @, G’ of the same kind such as two fields or two linear
spaces over a fixed field F. These systems eonsist of sets of elements g, h,
- « . closed with respect to certain operations, (Thus, for example, we might
have g + A in G for every g and & in @ and also ¢’ + A’ in & for eyery g’
and ' in ) We then call G and G’ equivalent if there exists a Ohe-to-one
correspondence between them which is preserved under the/operfitions of
their definition. We now see that we have defined two fields 7 and F' to
be equivalent if there exists a one-tq-one correspondence{ﬁj between them
such that (g + k)" = ¢' + &, (gh)’ = ¢’k for every gldnd & of F. Yet us
then pass to the second ease which we require forour further discussion of
linear spaces. . AL

Let F be a fixed field and ¥ consist of a sga(o}elements such that v + v
and au are unique elements of V for every‘yand v of ¥ and a of F. Then
we shall call V a general linear space over'¥. If V; is a second* such space

and there is g one-tm_ggpgﬁmﬁf@% ¥t~ ug between ¥V and V, such
that )
w+omz%+on, () =au

forevery wandvof V acr;d.a:o}F, then we shall say that ¥V and V, are equiva-
lent over F', We have th\; introduced two instances of what is a very im-
portant concept in all Mgebra.

The reader should observe that under our definition every mathematical
system G is eqtiivilent to itself and that if G is equivalent to a system &,
then G’ is equivalent to G. Finally, if &’ is equivalent to G, then @ is
equivalent to G,

O EXERCISES

1, Verify the statement that the field of all rational functions with rational coeffi-
cients of the complex number V2 is equivalent to the field of all matrices

a 2b
4= (b a )
for rational ¢ and & under the correspondence 4 «— g -} 5V'2,

* We use the notation V, instead of V7 to avoid confusion in the consequent usage
of ' for the arbitrary vector of ¥’ as well as for the transpose of w.
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2. Verify the statement that the field of complex numﬁers is equivalent to the
field of matrices
a —
. (b a)
for real o and b,
3. Verify the stafement that the set of all sealar matrices with elements in s field
F forms a field equivalent to F,

4. Verify the statement that the mathematical system consisting of all two-rowéd\
square matrices with elements in F and defined with respect to addition and multi-

plication is eyuivalent o the set of all matrices (\)
7'\
gn 0 az O . A\ Dy
0 an 0 o : SO .
an 0 am O nes (L'&"f inF )

N

0 au 0 an

under the correspondence indicated by the notation. 5\

S

6. Linear spaces of finite order. We shall,fes}ﬁct all further study of
linear spaces to linear spaces of order » mger'F: Then we define T o be a
linear space of order n over a given, figld i Vivepquiglent over F to V,
over F. Clearly, our definition impligg’tﬁét every two linear spaces of the
same order » over F are equivalent over F.

Our definition also implies th&$,if V is a linear space of order n over F,
then the properties (2), (3), (1)} and (5) hold for every 4, #, w, of V and
g, bin F. Moreover, every g 1 tity of ¥ is uniquely expressible in the form

(18) SO an + ..+ e,
where the equiva,leﬁ?e%etween V and V, is given by

(19) ,}:\ FT T SR i SR (N 4
Convﬁiy,\' define au = ua and © + v to be in V for every u, » of V and
aof F, "Then it may be shown very easily that, if (2), (3), (4), and (5) hold
and every u of V is uniquely expressible in the form (18) for¢;in F, then V
is equivalent over F to V,. However, we prefer instead to define V by its
equivalence to V,. This preference then requires the (somewhat trivial)
proof of .
Theorem 6. Every linear subspace L of order T over B of V., s equivalent
over F to V.. .
Thus we justify the use of the term linear subspace L of erder v over ¥ by
Proving that L is indeed what we have called a linear space of order r over F
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contained in the space V,. For proof we merely observe that every vector
of I = wF + ...+ «F is uniguely expressible in the form

{200 U= QUL+ ... Gl

for ¢; in F. Thus « in L uniguely determines the ¢; in ¥ and conversely.
It follows that

(21 uw— (e, ..., 06 \

is 8 one-to-one correspondence between ¥V and ¥, and it is triyis}ﬁ) verify
that it defines an equivalence of L and V.. \

‘We have now seen that every linear space L of order m over ' may be
regarded as a linear subspace of a space M of order'gy over F for any
m > n. Moreover, L = M {f and only {f m = m. 3

Theorem 3 should now be interpreted for arb11“\ary lmear spaces of order
n, and we have a result which we state as 7))

Theorem 7. LetL = uF + ... + wE ar}d Vi ..., Vm bein L so that
there exist quantities aq; in F for 'whzch )

wwwid B aﬁﬂ*‘[ﬂrﬁk’y ér‘g—t_n intln

and the coefficient malriz A = (‘al,j is defined. Then the number of the vy
which are linearly mdepende@t in T is the rank of the matriz A. Moreover,
Vi . . ., Vi fOrm a basig q{L over ¥ if and only if m = n and A 18 nonsingular.

EXERCISES

R
1. Verify the.gtatement that the following sets of matrices are linear spaces of
finite order oymijl and find a bagis for each.
a) Thesét of all m by n matrices with elements in 7.
[ The set of all m by n matrices whose elements not in the first row are zero.
7o) The set of all n-rowed sealar matrices.
“\'d} The set of all n-rowed diagonal matrices.

2. Find bases for the following linear spaces of polynomials with coefficients in F.
@) All polynomials in z of degree at most three,
b) All polynomials in independent variables « and y and degree at most two
{in z and ¥ together).
¢) All polynomials in & = ## 4 ¢ and ¥ = 5 -+ £2 and degree at most two in
z and y. _
d) All polynomials in \3,2, with F the field of all rational numbers.

e) All polynomisls in & primitive cube root of unity with F the field of all
rational numbers. .
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F3 All polynomials in w = w(i + 1) with # the &eld of all rational numbers
and i* = —1, v* = 2, Hint: Prove that 1, u, 4, u¢ are a basis.
g} The polynomials of (f) but with F the field of all real numbers.
3. Let A = diag {1, ~1, 2}. Show that I, 4, A? form a basis of the seb of all
three-rowed diagonal matrices,

4. Show that I, 4, B, AB form 4 basis of the set of all two-rowed square mat-

riees if
1 ¢ 01 Q.

B A= ((1} 0) . B= G _f) ',}‘.;I\

5, Show that, if ' D

0 0 0 01 0N
4={0-10), B={0 o0 2}
0 01 1 050

then I, A, A%, B, AB, A*B, B2, AB* A*B*form a ba?"s.ls\of the =et: of all three-rowed
square matrices. A O

7. Addition of linear subspacesqvfibfﬂi'iﬁi'af"ﬂ,-Ql'ﬁ;i?um} and Ly =
fwy, . . ., w,} are linear subspaces.gver F of a space L of order n over F,
the subspace Lo = {#y, . . . , Dyt ... . , W} of L will be called the sum of
L and L, and will be designated generally by

(@) S Lo = (L L)

If the only vector whitel is in both L; and L is the zero vector, we shall say
that Z, and L, are Eomplementary subspaces of their sum and write

(23) .’so\\ L(. = L], + L2 .

In thjs.qa:sé the order of L, is the sur~ of the orders of I, and L and in fact
we shall show that, if Iy = tF - ... + 0uF, Ln = wF + ... +wkf,
then Ly = 0.F + .. . + v, F b wnF -+ ... 4 wF.

For it is clesr that awy & . . . + Gubm + b0y + . . . + bgwg = 0 if and
only if » = gy & . . . - ot = (—bwr + . ..+ (—bpw, 15 in both Iy
and Ly. Thus » # 0 implies that the a; and b; are not all zero and therefore
that the vectors »; and w; spanning Lo are linearly dependent in F and do
not form a basis of L. Conversely, if necessarily » = 0, then the v; and w;
do form a basis of Ly, and Lo hag order m + ¢.

It I, and L, are linear subspaces of L and if L, contains Iy, we may ask
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whether a linear subspace Ls of L, exists such that Ly = L, + L.. The
existence of such a space is elearly a corollary of

Theorem 8. Let Ly of order m over F be a linear subspace of I, of order n
over F. Then there exists a linear subspace Ly of L such that Ly and Ly are
complementary subspaces of L.

The result above may be proved by the method we used to prove Theo-
rem 1, where we apply this method to the set v1, ..., #, %, ..., us, in
L = wF + ... 4 u,F. However, let us give, instead, a proof using matrix
theory. We put L = V., let @ be the m by n matrix whose rows are the basal
vectors ¢y, . . . , #y 0f L. Then G hasrank m, and there exists a noysingular
matrix ¢} such that the columns of G@Q are & permutation of these’of ¢,

GQ=(G G,

at ¥ i

where (7, is nonsingular, Then the matrix \\

_{G1 & AY;
Ao—(o I»—’m)\x;’\

is nonsingular, and A = A is obtaingd by permuting the columns of 4.
But then \)

www.d bl'aulibra,lfifﬂrg_in

(G
A= (1)

. . : PN
1s nonsingular, the rows of span V., and the rows of H span the space Lz
which we have been sge}%g. Moreover, it is clear that the rows of H are
certain of the vectorg\g? which we defined in Section 2.

</
"\.j\* EXERCISES

1. Let LyBe'the row space of each of the m by n matrices of Section 4, Ex. 3. Use
the method above to find a basis of the corresponding V,, consisting of a basis of
Iy and-ef's complementary space L.

2. Yet the following vectors u; span L, v; span L». Find a complement in { Ly, L»}
to L1 and to Lg.

) {1{12(1, _1, 1: 1): Uy = (2; ‘_2:' 11 2)’ Uz = (1; _1, D! 1)
v = (13 2,1, 0) ’ b = (4, -1 4,0

) {“x = 1,200,  w=(,-L,L0), w=(1,001)
n = {4, 31, ]}: Uy = (4; _3; 3, 2)1 Py = (1; 4, 2, -3}

o) {‘1&1= (1’0; 2, -1, w = {0, 1, 2, -1, us = (2,1,6, —3)
o= (3: ~2, 2, "_1) 1 Py = (_'51 3: —4, 2) ' vy = (_21 1, -2 1)
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" 8. Systems of linear equations. The set of all linear forms inz, ..., 2,
with coefficients in F is a linear space

(24) L=nF+... +zF

of order n over F. The left members

(25) f,' = f{(ﬂ!l, v vy Tp) = Qo P T ~
of a system L\

. A\
(26) GuTL b . .. T BT = (3 =(“1’{ -"- B m) y

of m linear equations in » unknowns, are such forms ami\a\i'e in L. Then,
if 7 is the rank of the m by n matrix 4 = (a;;) of coefficients of (26), we
see by Theorem 7 that certain # of the forms f; ag'e,ﬁfea,r]y independent in
F and the remaining m — r forms are linear combinations of these r.

We may assume without loss of generality that the equations (26) have

been labeled so that fi, . . ., fr are lineal:ly;inﬁependent in F, and
_ wwildbraulibrary.org.in
(27) f};= bklf},‘f“;“}' bk}-fr (k =r+1,.. 'rm) ]
for by; in F. Then 'i“}\
a

(28) ‘—'—:‘ / . 3 Uy = (Gil} P aw)

.\\:w: Um : (?:=1,--‘-1m)!
where 2"\ ', u, are linearly independent in F, and

\ )

(29) iy = bt & . b E=rF1,..,m).
If the system (26) is consistent, there exist quantities di, . . ., da in ¥ such
that fi(dy, . . ., d) = ¢.. Then (27) implies that
(30) e = fildy, . . -, da) = buer+ . . . + bt

G=r+1...,m.
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Define the augmented matrix A* of the system (26) to be them by n + 1
matrix

u
(31) 4* = ( ) 3 uf_=.(un Gx) = (a’l'l: Ceay Oy, G)
%

1y G
t=1,...,m),
N\

and see that (29) and (30) imply that A

(32) = byuy + ... + b (?o=r;-‘4;31,...,m),
80 that the rank of A* is at most r. But A* has A ag 4%ubmatrix; A* has
rank 7, "’\

Conversely, if 4* has the same rank r as 4 andwe choose us, . . . , 4, to
be linearly independent, then +f, . .., u} are xc}éﬁr}y linearly independent.
We then have (29) and may apply elemeptasy row transformations of type
1 to A* which add — (byut - . . . + by to wifor k=r+1,...,m.
These replace the submatrix 4 of A*by

wwwdbraulib{éfforg. n 4,

33) (f;’j G-

A\ ",

and replace 4* by\’ -
(N .
:"\s. 1
(34) \ (G ¢ C; =
' ‘..\'r‘:" 0 Cz ’ 1= !

2\ .
N &

where the (m — r)-rowed and one-columned matrix Cy has cio = & —
{(buer + ... + bye,) as its elements. But, clearly, if any cyp # 0, the
matrix A* has a nonzero (r + 1)-rowed minor. This is impossible if 4* is
of rank r,

We now see that the system (26) is consistent if and only if A* has the
same rank r as A. Moreover, we have already shown that, if A* does have
the same rank as 4, then m — r of the equations {26) may be regarded as
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linear combinations of the remaining r equations and are satisfied by the
solutions of these cquations. Tt thus remains to show that any system of r
equations in 2y, . . ., &, with matrix of rank r has solutions, We may write
z = (1, .. «, Ta) and see that such a system may be regarded as a matrix
equation

(35) Gz’ = o, v={e,...,6).
N\
Before solving (35) we prove N\
Lrmua 4. Let G be an r by n mairiz of vank r. Then A0
(36) G=(1 0Q N

for a nonsingular nrowed matriz Q. \

For J.emma 2 states that G = (H 0)Q,, where th\13 nrowed and non-
singular and H ig an r by r matrix of rank r. Thén ¥ is nonsingular, so is
@ = diag {H, I._,}, (I, 0)Q: = (H 0). Thus we have (36) for Q =
Q01 O
The system (35) may now be written as

@) @ oy -, RSy

But then y = 2@’ is a nonsingular linear transformation and the y; are
tinearly independent IineaR{é)rﬁls in x, ..., z, Evidently, (37) has the
solution y; = ¢; for 4 =31, . ., #; the solution of (35) is then given by
2=y@) for yi=piti=1,...,7) and e, . .., ys arbitrary. Ob-
serve that, if we choio%e the notation of the z; so that @ = (¢}, @) with
Gy an rrowed noxgingular matrix, then

(38) Q‘; {(};1 f2 ) ] ¥y= (er Y2) ] &= (Xl! Xz) H
A Y n—r

\ W6

where 1 and X; have r eolumns. From this we obtain

Q’ = (gi ? ) ! xQ’ = (XIG{ +X2 é.- Xz) H
2 #—r

8o that

X2=Y2=(xr+ls--°!xﬂ)’

Vi =X6+ X6 =(...,6),
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and our solution of (35) iz given by
(39) X, = (Y, — X)) @)™ .

But then we have solved for z, . . . , z, as linear functions of 2,4y, . . ., 7,
For exercises on linear equations we refer the reader to the First Course in
the Theory of Equations.

9. Linear mappings and linear transformations. The aystem of equations
(3.1) of a linear mapping was expressed in (3.32) as a matriz/eguation
z' = y'A’, Let us interchange the roles of m and n, A and A"iri this equa-
tion. Then we see that a linear mapping may be expressed'as a matrix

equation _ e\
(40) v=ud, ~"‘;.'\.\
where A i3 an m by # matrix and Py NG

(41) =Wy Y v:=.j'(a=\1,:..,xn)-

Clearly, u is a veetor of V., over F, v isd vector of V, over F, and (40) may
be regarded as a cOfteNpUHALNSE P9 defined by A whereby every u
of V,, determines a unique vectoryA of V.. We now proceed to formulate
this coneept more abstractly <

Let L and M be linesr dpaces of respective orders m and n over F and
consider & correspondendeon L to M. Designate the correspondence by the
symbol 8, so that S i§ the funetion

AS
S: ,\“ > u— us
:”\s.
{read u gogs\\lscru upper 8) wherein every veetor  of L determines a unique
u¥ in M. Buppose also that
N

(4Q\; v (au 4 buy)® = auS + buf

for every @ and b of F, u and u, of L. Then we shall call S a linear mapping
of the space L on the space M and describe (42) as the property that S is
linear.

Suppose now that L = wF + ... + u.F and M = o,F + ... + 0.F,
so that we are given not only the spaces L and M but fixed bases as well.
Then a linear mapping S uniquely determines u§ in M , and hernce

(43) 7"»‘;3:‘1\{1?-’1+---+0-§n9n (3.=1,---:m}!
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for gi; in F. Thus 8 determines zlso an m by » matrix A = {a;;). But, con-
versely, if A is an m by n matrix and we define uf by (43) for the given ele-
ments a; of 4, then the property that 8 is linear uniquely determines the
mapping S. This is true since every w of L is uniquely expressible in the
form '

(44) %=y + - .. F Youlhins
Q"
for ;in F and (42) implies that A
2\ e
(45) W =g 4. g »

A

It follows that to every linear mapping S of L on M and ‘gi’ven buses of I
and M, there corresponds & unique m by n mafrix 4 and conversely, We
ghall call A the matriz of 8 with respect to the giz:ee}.@ses of L and M.

We now observe that ¢

X

m m ne N . f
3 - 3 NS 2NN = -
u E Hw Zl %(VZ g}}a%) bra‘g;ﬁﬁgﬁﬁ

i

My =1

i=1 4=
where ~ )
zmx\ ”
\\"If=zy‘a‘f (j=1,...,ﬂ)-_

i=1

AN/ :
But then, if we assuine temporarily that L = Va and M = V, and put
v = %S in (40) afid"(41), we see that S is the linear mapping
O
(46) N u—ud =ud
AN

for the given matrix A. Thus every linear mapping which is a change of
variable as in (3.1) may be regarded as a linear mapping of the space Vo
on the space V. . ]

Let us next observe the effect on the mairix defined by 2 linear mapping
of a change of bases of the linear spaces. Define new bases of L and M,
respectively, by

(47) uﬁ‘l) = Z Pri i !J}m = 2 Gii% 4
i=1

f=1



84 INTRODUCTION TO ALGEBRAIC THEORIES

fork=1,...,mandl=1,...,n Then P = (p:) and Q@ = (g;;) are
nonsingular and, as we saw in (3.33), we may also write the second set of
equations of (47) in the form

(48) v = z?}'efa';m .
i=1
where B = () = ¢'. We apply the linearity of S to (47) and ob\tain
u®)s = Epﬁu;s. Substituting (43) and (48), we have A
i=1 A
(49) (@)s = z Barf®
=1 K9

where by = Zpgiagrs. Hence the matrix B = (bhef the linear mapping
8 with respect to our new bases is given by ',1\\'

(50) B = PAQa{fx\

Since P and (' are arbitrary nonsmg’lﬁar matrices of m and »n rows, re-
spectively, we see tHAY ehabipel b Yab®8 P and M replace 4 by an equiva-
lent matrix., Thus any two equivalent m by n matrices define the same
mapping of L on M. <

If L and M are the same:,si;ﬁce we shall henceforth call & linear mapping
8 of L on L a linear transformation of L. Since we are now considering only
a single space, the only possible meaning of the u; and v;in (43) can be that
of a fixed basis up 0. , u, of L of order n over F and of a second basis
P, ..., U, of L,j\];;ei us restriet our attention to the case where »; = u.
Then we de né ‘the matrix 4 of a linear transformation S on L with respect
to a fixed Basis uy, ..., ua of I to be the matrix 4 determined by (43)
with %;.3%;. We have defined thereby a one-to-one correspendence be-
tWGBﬂftﬁe set of all n-rowed square matrices with elements in F and the set

of alllinear transformations on L of order n over F. If I = V., such a
correspondence is given by

u— us = ud .

Clearly, we should and do call S a nensingular lnear transformation if 4 is
nonsingular. Since we may then solve for  — #5411 we see that a non-

singular linear transformation defines a one-to-one correspondence of L
and itself,
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We now observe the effect on A of a change of basis of L. We use (47)
but note that w = »; and uf® = »{”, so that we have P = Q. Hence a
change of basis* of L with matrix P replaces the matrix A of a linear trans-
formation by

(51) B = PAP-.

It is now clear that in order to study those properties of a linear trans-
formation on L which do not depend on the basis of L over F we need only
study those properties of square matrices A which are unchanged Whe\n we
pass to PAP-1, We shall eall two matrices A and B similar if (51) Holds
for a nonsingular matrix P and shall obtain necessary and sufficient condi-
tions that A and B be similar in our next chapter. N

¢4
EXERCISES e

1. Let S be the linear mapping (46) of ¥; on V, defined for the following mat-
rices A. Find the vectors of ¥, into which (-2, 3, 4&,;{1, 0, 0), (0, 1, 0) of V; are
mapped by S, \

1-3 0 1 , O¥/2 34 0
a) A = 2-6-—-1 2 ,3};‘;1:_ -1 2 0 4
-1 3 1-—t1 WW: rauli ary Opg-d o

2 -1 2 -5 % ~2 00 0
c)A=(0-—2 3"&2) d)A=(O—10(13)
) _
1 1 { 1 1 11
2, Show that the Iineartransformations (46) of Vs defined for the following mat-
rices 4 are nonsiugular @hd find their inverse transformations. Apply both S and
87 to the vectors ufxllx 1

5 3 -1 -4
\)A ( 020) b)A=(5—2—1)
5§ -2 11 2-1 2
e}ﬁne & for the matrices of Ex. 2 and let € be one or the other of the curves
of all veetors (points) 4 = (21, 29, 25) Whose coordinates satisfy the following equa-
tions. Find the equation of the eurves CS into which each i§ carries each €\

a) 3z — 221 + 2z} + dowy — 20 — 2wt = 1
By —dat + 1122 = —6xy%2 — 1057 — 18mam 1 1

* Obgerve that a change of bases (47) of I defines a linear transformation of L w_when
Wwe put wf = 4, Thus we may regard a change of basis as being induced by s nonsingu-
lar linear transformation.
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fork=1,...,mandl=1,...,n Then P = (pw) and ¢ = (g;)) are
nonsingular and, as we saw in (3.33), we may also write the second set of
equations of (47) in the form

(48) v = Zr,-;v?” )
I=1
where B = (r3) = @1 We apply the linearity of S to (47) and oQtain
(uf®)9 = th-mg. Substituting (43) and (48), we have O\
i=1 AN
(49) @) = > burl? RS
i=1 ) '\'\ ;

where by = Zprigir. Hence the matrix B = (bk{) of the linear meapping
S with respect to our new bases is given by ) ,;\\'

A\ N
(50) B = PAGAO

Since P and @ are arbitrary nons'méiilar matrices of m and n rows, re-
spectively, we see thit CHIRBUIGT BERFL and M replace 4 by an equiva-
lent matrix. Thus any two equiwilent m by n matrices define the same
mapping of L on M, 2

If L and M are the same“’sbace we shall heneeforth eall a linear mapping
S of L on L a linear transformaiton of L. Since we are now considering only
& single space, the onlypossible meaning of the %; and »; in (43) can be that
of a fixed basiy ‘t:il,,'\..’.’.: » Un of I of order n over F and of a sceond basis
vy - .., v, of Iy Jeet us restrict our attention to the case where vy = Ui
Then we defifi® the matrix A of & linear transformation S on L with respect
to a fixed(basis us, . .., u, of L to be the matrix A determined by (43)
with u;%2 ;. We have defined thereby a one-to-one correspondence be-
tweel;i :ﬁ‘hé set of all n-rowed square matrices with elements in F and the set
of‘\al} linear transformations on L of order n over F. If I, = V., such a
correspondence is given by '

u— u = yd

Clearly, we should and do call S a nonsingular linear {ransformation if A is
nonsingular. Since we may then solve for u = uSA~1 we see that a non-

singular linear transformation defines a one-to-one correspondence of L
and itgelf,
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We now observe the effect on A of a change of basis of L. We use “7
hut note that w; = v and uf” = vf?, so that we have P = Q. Hence a
change of basis* of L with matrix P replaces the matrix 4 of a linear trans-
formeaftion by :

(51) B = PAP,

1t is now clear that in order to study those properties of a linear trangs,
formation on L which do not depend on the basis of L over ¥ we need only
study those properties of square matrices A which are unchanged Mwe
pass to PAP-1. We shall eall two matrices 4 and B similar if (51) holds
for & nonsingular matrix P and shall obtain necessary and suffieient condi-
tions that 4 and B be similar in our next chapter, D

.

EXERCISES

1. Let S be the linear mapping (46) of Vion ¥, dﬁﬁﬁ;}d’ {or the following mat-
rices A. Find the vectors of ¥ into which (—2, 3,41\, 0, 0), (0, 1, 0) of ¥3 are
mapped by 5. MY

1-3 0 1\ «\° /-2384 0
Q) A = ( 2 —6 —1 2)wg;£5)dﬂrﬁ1{briryﬂorg.in4)
~1 8 1 -1y 00 2-3
2 ~1 2 —B -2 000
c)A=(O+2 3:,?5) d)A=(0*100)
1L XADh—-1 -1 111

2. Show that the linef? transformations (46) of Vs defined for the following mat-
rices 4 are nonsiﬂé'u»%‘i and find their inverse transformations. Apply both S and
87 to the vectors.of(Px, 1.

\\ —4 3 5 3 ~1 —4
MNagyd={( 3 0 20 BAd=1{5-2-1
) 5 -2 11 2 -1 2

e A
\ W

3 . .' L
3. Défine 8 for the matrices of Ex. 2 and let C be one or the other of t!:m curves -
of all vectors (points) u = (z, 22, s) Whose coordinates satisfy the following equa-
tions. Find the equation of the curves €S Into which each 5 carries each C.

a) 3zt — 22} + 20} + 4@y — 2oats — 2000 = 1
B) —dx? 4 llal = —6zry — 10m2 — 18eaxs + 1
* Observe that a change of bases (47) of L defines a linear transformation of L when

W6 put uf = 4, Thug we mey regard » change of basis as being tnduced by 8 nonsingu-
linear transformation.
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10. Orthogonal linear transformations. The final topic of our study of
linear spaces will be a brief introduction to those linear transformations per-
mitted in what is called Fuclidean geometry. Let then V, be the n-dimen-

sional linear space of vectors w = (g, ..., ¢, over a field F. We define
the norm of u (square of the length of u) to be the value f(u) = fle, . . . , ¢a)
oi the quadratic form

(62} @, ... ,z) =28+ ...+ k. A

We propose to study those linear transformations 8 on ¥, which, are said
to be length preserving and define this eoncept as the property&that Flw) =
(%) for every u of V,.. Such transformations § will be called orthogonal.

We may define S by %5 = ud for an n-rowed square madrix A. Then,
clearly, f(u) = ww/, f(u%) = wS(uS) = ud AW, Wiltd’ B = AA' = (by)
and see that f(u%) = Zedicy, flu) = S Put ¢, =3¢; = 0forj # p and
have f(u) = f(u5) cnly if b;; = 1 for every . Theh take ¢, = ¢, = 1, all
other ¢; = 0, from which f(x) = 2, f(tf‘;ﬁ{i-—} 2 + 2b, = f(u) only if
bpe = 0 for a p> ¢, B =1 is the identity matrix. We call matrices 4
satisfying W

(53) A= T
www_dbrauhb}‘ary.org.m

. orthogonal matrices and have sHown that S is orthogonal if and only if its
mairix is an erthogonal mat

We have seen that S determines A uniquely only in terms of a fixed
basis of V,,. Now in Eu}ﬁﬁean geometry the only changes of basis allowed
are those obfained by ‘an. orthogonal linear transformation, that is, those
for which the matrix’P of (51) is orthogonal. But then PP’ = I, P’ = P,
PP =], 380 th'\b if S is a linear transformation with orthogonal matrix A
and we replgce A by PAP-t = B, then

\ .; = (PAP')(PA'P) = PAA'P' =1,
akﬁ‘ihs also orthogonal.
EXERCISES

1. What are the possible values of the determinant of an orthbgoﬁal matriz?

2. Let I be the identity matrix, A be a skew matrix such that I <+ 4 is nonsingu-
lar. Show that (f + 4)~1(7 — A) is orthogonal,

3. Bhow that every orthogonal two-rowed matrix 4 hag the form

o b
ib ?G) H
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where a = s(s2 + (972 b = #(s* -+ $)™%, 5 and { range over all quantities in F
such that 2 + 8 # 0. Hint: The result is trivial if 4 is a diagonal mairix, Now
& + aly = 1 s0 that s = gy, ¢ = an are of the form above, while, conversely,
@4 5= (& &)t + 971 = 1. Thevaluesay = £b, 6 = Faare derived from
AA' = L. .
4. The equations for rotation of axes in a real Euclidean plane through as angle
hare® = g 08 b — yosin A, ¥ = o sin A + yo cos h. Show that the corresponding
matrix is orthogonal and that every real orthogonal two-rowed matrix is either the >
matrix of a rotation or its product by the matrix

O\
1 0 £\
E = (0 _1) e

of a reflection = = %o, ¥ = — Yo ) \

A

5. Find a real orthogonal matrix P for each of the followinig spmmetric matrices
A such that PAP' is a diagonal matrix. Hint: Compute {AP’ = D = (d;;} and
pllt d];z =, .\’1.\ ’ .

QY wGY (D o)

11, Orthogonal spaces. We shall calkibmessatorany snd.nof Vs, orthog-
onal (that is, in a geometrie sense, pérpendicular) if uv’ = 0. Then, if 4 is
any orthogonal matrix and we défine a linear transformation 8 of V. by
uS = ud, we have AN

S = ud,  Fmvd, Y = uAd'Y = w =0

if and only if wv’ = O Thus orthogonsal transformations on V., preserve
orthogonality of ){Q@}O“rs of V,.

I L= 0, 557, + 0,F is o linear subspace of V,, we define the set
O(L) to be the set of all vectors w in V', such that ow’ = 0 for every v of L.
Then O(L)48' linear subspace of V, which we shall call the space orthogonal
in V, €0 L. For, clearly, if v and w; are in O(L) snd @ and b are in 7, we
have v(awl + bwz); — G‘Uw; + b»vw; = 0, aip, + by is in O(L). We now
prove .

Theorem 9. ZLet L be a linear subspace of order o of V. Then the order
of ML) isn — m.

In fact we shall prove

‘Theorem 10. Let L be the row space of the m by n matria G of rank m so
that G = (I, 0)Q for « nonsingular n-rowed matriz Q. Then O(L) ts the
r0w space of H = (0 Inm)(Q)* of rank n — M. /

For proof we first note that the elements of GH' are the products ,w;
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of the rows v; of G by the transposes of the rows 1w; of H. But GH’ =
(In B0 I,.»)], and, clearly, then GH' = 0. Let then O(L) = yF +
...+ y,F of order ¢ over F go that O(L) contains the row space of H,
Evidently H has rank n — m, and we must haveg > n — m. Welet Hybe
the ¢ by n matrix whose kth row is y; and we have GH; =10, 0 =
(In. OYQH]. The rank of the » by ¢ matrix

.y D
D= QH! = (D;) N
. . K\
is ¢ sinee @ is nonsingular. But A\
Un ®D=(5j‘ O
N\

g0 that Dy = 0, D has at most » — m nonzero rows,dnd D must have ranlk
g < n — m. This proves that ¢ = n — m, the,rQ\x; space of H is O(L).

Note that the row space of H is the set of‘&lf solutions & = {2y, ..., Tu)
of the homogeneous linear system Gz’ =B

The sum of the orders of L and O(L} 1§ #, and it is natural to ask whether
or not they are cotpplempnpiank, inel ’qh&t is, whether V, = L 4+ O(L).
This is not true in general, since if¥ e field of all complex numbers and
L=9oF, ?=—1v={(1 g then ' =1 + ¢ = 0. Henee O(L) is con-
tained in L and O(L) L. However, we may prove

Theorem 11. Let F %\a field whose quantities are real numbers. Then
Vo =L+ OL).

For by Theorem 4 1t suffices to prove that the only vector w in L and
O(L) is the zero,{ector Henee let w be in hoth L and O(L) so that w = 4G,
where d = (di\ , &) has elements in F and G is an m by » matrix of
rank m whése row space is L. Then Gw’ = 0 while also Gw’ = GG'd". By
Theorem 3 17 the matrix GG' has rank m and is nonsingular, GG'd’ = 0
only ifid’ = 0, d = 0, w = 0 as desired.

N EXERCISE

Let L be the space over the field of all real numbers spanned by the following
vectors u;. Find a basis of the space O(L) in the corresponding V.

@) w=(1,2—-1,0, twm=(0121)

B wm=(1,0,1,1), = (0, 1,0, 1), w=(—1,21,0
) m=(l,-1,21), w=1(2-1,238, w=I(,-240
& wm=(12 -1, w=(-1,1,0), w = (3,3 3)



CHAPTER V
POLYNOMIALS WITH MATRIC COEFFICIENTS

1. Matrices with polynomial elements. Let F be a ficld and designateby

(1) Flz] .Q
7"\

{(read: F bracket z) the sot of all polynomials in # with cceffelents in F.
We shall congider m by n matriecs with elements in Flz] éma efine elemen-
tary transformations of threc types on sueh matrices a»s""ﬁ Bection 2.4, As
we stated In thatf section, we assume that in the clementary transformations
of type 2 the quantities ¢ are permitted to be a.;}y\hu:adntities of Flz]. But
those of type 3 are restricted so that the quaptity @ in Flx] shall have an
inverse in F{z]. Then a # 0 must be a consgighi polynomial, that is, ¢ may
be any nonzero quantity of F. R\ ) )

We now let A and B be m by n gttty Wb alehts8t¥in Flz] and call
A and B eguivalent in Fz] if there az‘cfété a sequence of elementary transfor-
mations carrying 4 into B. Thedfleld F(x) of all rational functions of z with
coeficients in #' contains Flz) g and it is thus clear that if A and B are equiva-
lent in Flz] they are alsp squivalent in F(z). Hence we sce that 4 and B
are cquivalent in Flz] €ly if they have the same rank. We may then
brove P N\Y;

Lrvmaa 1. Every{ﬁﬁﬁz@m madriz A of rank v with elements in F{x] is equiva-

tent in Flx} to N
Q

Nt G: 0
\ }
where Cy = diag {fy, . . ., £} for monic polynomials f; = fu(x) such that f; di-
m:d(’.ﬁ fi-}—l-

For the ¢lements of all matrices cquivalent in ¥{z] to A are polynomials
in 2, and in the set of all such polynomials there is a nonzero polynomial
fi = fi(x) of lowest degree. Using elementary transformations of types 3
and 1, we may assume that fi is monic and is the element in the first row
and eolumn of a matrix € = (c;;) equivalent in Flz} to A. By the Division

89
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Algorithm for polynomials we may write ca = ¢:fs + 7, for ¢; and »; in
Flz] and r; of degree less than the degree of f1. But if we add —g, times the
first row of C to its 7th row, we pass to a matrix equivalent in Flz] to 4
with r; as the element in its 7th row and first column. Our definition of h
thus implies that #; is zero. Moreover, we have now shown A cquivalent,
in Flx] to a matrix D = (d;;) with dyy = 0 for ¢ # 1, di; = 7. Similarly,
we see that every d; is divisible by fi and hence that 4 is equivalent in
Flr] to a matrix Q)

r O o\:}
(3) (0 Aﬂ) H X '\:\

where A, has m — 1 rows and » — 1 eolumns. Then" ither Ay =0, or we
may apply the same process to A,. After a finite gulber of such steps we
ultimately show that A is equivalent in #[z] to adatrix (2) of our lemma
such that every f; = f;(z) is monic and is a ’]‘;}nomia] of least degree in
the set of all elements of all matrices equi}{al&:nt in Flz] to

{4) www,dbrauﬂhra?'%(gr;{fig) . G = diag {f;, ..., -} .

Write fi1 = fis: 4 &, where §'and ¢; are in Flz] and the degree of # is less
than the degree of f;. Then'we add the first row of A; to its sccond row 80
that the submatrix in the first two rows and columns of the result is

(5) :»\1;\:::\ | (f .?s+1) '

O
We thent add —s; times the first eolumn to the second column to ohtain
a ma.tgli equivalent in Flz] to 4; and with corresponding submatrix

®) | (fj_ ‘jf)

Our definition of f; thus implies that ¢, — 0, f: divides f;., as deseribed.
We observe now that the clements of every f-rowed minor of a matrix 4
with elements in F[z} are polynomials in z, 0 that these minors are also
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polynomials in 2. By Section 2.7 if B is obtained from A by an elementary
transformation, then every f-rowed minor of B is cither a t-rowed minor of
A, the produet of a f-rowed minor of A by a quantity @ of F, or the sum
M1 + fM, where M and M are é-rowed minors of A and f is a polynomial
of Flz}, If d in Fz] then divides every frowed minor of A, it also divides
every t-rowed minor of all m by n matrices B equivalent in Flz] to 4. But
4 ig also equivalent in Flz] to B and therefore the {-rowed minors of equiva-
lent matrices have the same common divisors. We may state this result a3

Leymya 2. Let A be an 1 by 1 malrix with elements in ¥ix] and d, b&\the
greatest commeon divisor of all t-rowed minors of A. Then d, is also the g'.featest
common divisor of the t-rowed minors of every mairic B equivalent 1 Elx] fo A.

Every (k + 1)-rewed minor M1 of A may be expanded aedording to a
row and is then a linear combination, with coeflicients in Fi2, of k-rowed
minors of A. Henece d; divides every My, so that d; divi}ie\s drrr. We ob-
serve also that in (2) the only nonzeroc krowed mindrs are the k-rowed
minors |diag {fi;, ..., fi,} ] for i1<éa< . . . <4, pudsince clearly every f;
divides f,,; we see that the g.c.d. of all k-rowed‘tinors of (2) is fi. . . /&
We thus have d, = f, .. . fi, whence PN\%

dpror, E:};aulibral'y,org.in
" s 2

It is customary to relabel thme\’lgnlynomials fi and thus to write f, = g,
feo1 = g, f1 = g.. We call gﬁhé Jth inwariant factor of A and see that if we

define dy = 1 we have the formula .
{8) Y g,‘=d—i? G=1,...,7.

7'\NW
'§“‘
Moreover, g;’:is now divisible by gsq forj = 1,...,7 ~ 1. We apply ele-
mentagy:tfahsformations of type 1 to (2) and see that if A has invariant
factofs gi,". . . , gr, then 4 is equivalent in Flz] fo

(9) (OG g) G = diag {gs, . ., g2} -

If, then, B is equivalent in F[z] to 4, it has the same greatest comumon di-
visors dy, and hence the same g; of (8), while, if the converse holds, B is
equivalent in Flz] to (9) and to A. We have proved
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Theorem 1. Two m by n malrices with elements in Fix}] are equivalent in
Fix] if and only if they have the same invariant factors. Every m by n mairiz
of rank r with invariant factors g, . . . , g 18 equivalent in F[x] {0 (9).

As in our theory of the equivalence of matrices on a field we may obtain
a theory of equivalence in ¥[2] using matrix produets instead of elementary
transformations. We thus define a matrix P to be an elemeniary matriz if
both P and P-! have elements in Flz]. Then, if ¢ = |P| and b = [P},
the quantities @ and b are in Flz], @b = |I| = 1, so that ¢ and bare riahzéro
quantities of F. But if P has elements in Fz] so does adj P. Henc&so will
P-1 = |P|-tadj Pif |P|isin F. Thus we have proved that asguare ma-
triz P with polynomial elements is elementary of and only 11' its ~determinant
ig a constant {that is, in F) and nof zero. "

We now observe that, in particular, the determmant‘ of any elementary
transformation matrix is in #. Hence, if 4 and B arxé\dquare matrices with
elements in Flz] and are equivalent in F[z], their.determinants differ only
by a factor in F. Morecver, if |4 | and |B| %Txé monic polynomials, then
the equivalence of 4 and B in F[z] impligs\hat |Al = |Bj| and, in fact,
that when A is a nonsingular matrix with”gl,” .« v, {88 invariant fzctors its
determinant is the M%?ﬁﬂ rbral'gﬂnrg in

1t is clear now that a square mafrix P with elements in #[z] is elementary
if and only if P is equivalent ifi F[:c] to the identity matrix, and thus the
invariant factors of P are all uhity. We may now redefine equivalence. We
call fwo m by n matrices S\\Qﬁd B with elements in Fx] equivalent in Flx] of
there exist elementary mgbrices P and Q such that PAQ = B. Then we- again
have the result that'@ and B are equivalent in F[x) if and only if they have
the same mvamantfactors For under our first definition P and @ are equiva-
lent in F[:L‘]"iQ 1dent1ty matrices and hence may be expressed as products of
elementar’y‘jtr}nsformation matrices. Dut, if Py and Qg are elementary trans-
forma@iqnffnatrices, the products Pod, 4Q, are the matrices resulting from
the 'ﬁppficat-ion of the corresponding elementary transformations to 4.
Hende, PAQ must have the same invariant factors as A. The converse is
proved similarly, and we have the result desired.

In c¢losing let us note a rather simple pelynomial property of invariant
factors. The invariant factors of a matrix A with elements in F[z] and rank
r are certain monic polynomials g:{x) such that g...(x) divides ¢i(z) for
i=1,...,r— 1 If gu(&) = 1, then gi{x) = 1 for larger j =k -+ 1,

. ;7. Let us then call those g;{z} = 1 the nonirivial invariant factors
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of 4, the remaining g:(z) = 1 the frivial invariant factors of A. Thus there

exists an integer { sueh that g.(x} has positive degree for ¢ = 1,..., ¢
genlz) = ... =g =L
EXERCISES
1. Express the following mafrices as polynomials in # whose coefficients are
matrices with constant elements. ' £\
142 23+4f4+e4+2  2344x42 KoY
a) 0 g+ at ) o\
1—-2¢ 243 —3z~1 oS-+ -2/)"
e x 2t — 2z \:
B {2—1 1 +z 2t — 2z =]
¥ 22— 2 22} 20 4 2 x? — dr <\6
N
24— 22 z? — at R
) 3 z —28 AWV z
et bt -2 41 PPz 2 +1

L x w&;-@.}l"r;mljbrary.OI'g,in
) (xwrz z+1 xz.qézj
-1 2z A2 2
2, Let A be an m by n mat, 'x'\;w*ﬁtose elements are in Flz]. Describe a proeess by

means of which we may ugb.elémentary row transformations involving only the
ith and kth rows of 4 to yaplace 4 by a matrix with the g.e.d. of a;; and ax; in ite
ith row and jth colums. \int: Use the g.c.d. process of Section 1.6 with f = as;,
g = Qkj. ."\x:’\
3. Use elemea%fj; transformations to carry the following matrices into the
form (9). W\

&
NS

2 (g \\j?_l) b (:z:(:z: 0— 1} » _;?1)) p (x’ +0z -2 . ._}.02;; ~ 3)

4. Deseribe a process for reducing a matrix 4 with elements in Flz] to an equiva-
lent diagonal matrix. How, then, may we use the process of Ex. 3 to carry this
preliminary diagonal matrix into the form (9)?

3. Reduce the matrices of Ex. 1 to the form (9) by the use of elementary frans-
formations,

6. Determine the invariant factors of the matrices of Ex. 1 by the use of (8).
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7. Use elementsry transformations fo reduce the following matrices to the
form (9).

x? 1 xt — x8 g—zxt—2
0 i 2* z—2
a) 2 -z 24z - 14 2r ~z* — 2°
253 1 24 =422 =1 4z — 2z
2 -2z 2r—2 -2 ~
4 + 4 Jet 2 ~3z 4z + 6 \
%) z z 1-z 41 '.\:\'
4z 4 4z 2x? —2g¢ 4z — 2 472 + 5z — N\
z+3 322 +3  2+3 z+3 N
x 2x? 2z x O
Il14z-0 3 +z 2% +1 UK
?—z+1 r — 2 1—2¢ 1 2
—r 2z + 1 :c—'\xl\ z+1
2—z z—1 NP2 z— 2
9 —3 — 2 Jr+ 4 V:n 2% 4+ 4
-4z —1 PHr+2 ¥ +3r -1 zt—x+ 2
2rt 4 4 -{‘—fyw“dbral}li—b%:gr.?“'&‘gﬁ@ +3x+1 zt—x -1
@?tax—3 Sedt 2x zt—1 Gzt + Bx + 2
O s+o T 3+ 3 —22 4 22 + 1
2+ 2 \\" —z° z+1 —i?
2. Elementary divisors. Let K be the field of all complex numbers so that
A</
':‘,\'“" gi(x) = (@ — e ... (& — ¢)%,

W

where ¢, .’%Tc., are the distinet complex roots of the first invariant factor

of a matrix 4 with elements in K[z]. Since g:1(2) divides g.(z), it is clear

tha,t.\'e"y\.ery g:(x) divides g:(z)}, and thus

(10) T

Here 7 is the number of invariant factors of 4, ey; = €5, e;; = 0 fore = 2,
. » 7. We shall call the rs polynomials

gi(z) = (2 —e)on. .. (3 — c)tie (i=1,..

Ji = (@ = e

the elementary divisors of A. Those for which e;; > 0 will be called the
nontrivial elementary divisors of A.
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The invariant factors of A clearly determine its elementary divisors
uniquely as certain rs powers f;; of linear funetions 2 — ¢; where r is the
rank of 4, and s is the number of distinet roots of the invariant factors
of 4. Conversely, the elementary divisors of 4 uniquely determine its in-
variant factors. In fact, let us consider a set of ¢ polynomials each a power
with positive integral exponent of a monic linear factor with a complex
root. The distinet roots in our set may then be labeled ¢y, . . . , ¢, and our
polynomials have the form hy; = (z — ¢;)"i forny; > 0. For each ¢;let ¢ he\
the number of hy; in our set, { be the maximum ¢;. Then, clearly, g = § »
...+ 1, £ ts, and our set of polynomials may be extended to a et of
exaetly s polynomials by adjoining { — ¢; polynomials {z — ;:,-)JE?:' with
n;; = 0. Let us then order the { exponents n; to be integers &;satisfying
ey Z e = ... 2 ey 2 0. Define g:(x) as in (10} for 7 1, ...,tand
obtain a set of polynomials gi(z) such that g..{z) dividés)g:{z) for+ = 1,

., 2 — 1, the gi(z} are the nontrivial invariant fasters of 2 matrix 4
whose nontrivial elementary divisors are the given }ih}'lf A has rapk r, we
have r = £, and we adjoin (r — £}s new triviak elhrhentary divisors f;; to
obtain the complete set of r invariant factorsigyZ) of 4.

It is now evident that fwo m by n matrices with elements in Kix] are
equivalent in K|x) if and only if theyvhar lr sallevdlesn@idaly divisors.

The matrix (9) has prescribed in?;a'riaint factors and hence prescribed
elementary divisors. However, it isdesirable to obfain a matrix of a form
exhibiting the elementary divig;gré‘explicitly. We shall do this. Let us prove
first: \\ -

Theorem 2. Let Iy, . . O)\fa be monic polynomials of Flx] which are rela-
tively prime in pairs. Thén the only nonirivial invariant foctor of the matriz
A = diag {fi, ..., fs]ds its determinant g = fy. . . 1

The result is tiWial for s = 1. If s = 2, the g.e.d. of the elements f, and
Ffeof Ay = diag™i, f2) is unity, d, = 1, fifzis the only nontrivial invariant
factor of A?,fgi:nd A, is equivalent in Fiz] to diag {f:f2, 1}. Assume, then,
that A'.;z.j—:\'diag {f1, . .., fem1} is equivalent in Flz} to B, = diag {g.,
L. NJ, where g,y = f1. .. fo-r. Then A = diag {fy, . .. , s 18 equiv-
alent in Flx} to disg (ges, for L, ..., }}. But g, is prime to f, diag
{ga_, fo] is equivalent in Flz] to diag {g, 1}. Hence 4 i8 equivalent to
diag {g, 1,. .., 1}. Then g is the only pontrivial invariant factor of A,
and our theorem is proved.

We see now that if g,(z) is defined by (10) for distinct complex numl?ers
¢, the corresponding elementary divisors fis, . . - , fu ave relatively prime
in pairs. By Theorem 2 the matrix 4; = diag {fu, . .. s Jis) 18 equwaignt-
in #(z) to diag {g; 1, ..., 1}. Butthen A = diag {41, ..., 4.} Isequiv-



96 INTRODUCTION TO ALGEBRAIC THEORIES

alent in F[z] to diag {gs, . .., g5 1, ..., 1}, and hence the nontrivial in-
variant factors of 4 are g4, . . ., g+ We examine the form of 4 to see that
we have proved :

Theorem 3. Let ey, . . ., ¢ be complex numbers and fi= (x — ¢)2i for in-

togers 1y = 0. Then the matriz
A = diag {f}, ..., f:}

has the f; as its elementary divisors. N\

EXERCISES - ~

1. The following polynomials are the nontrivial invariant facﬁom ‘of & matrix.
What are ifs nontrivial elementary divisors? N

a) 28+ 20 + 23, 23 I 22, R m\\
D) of 4 254 204 4 223 4 2 4 =, ma—l—a:,.\“x
92w —1F G-+ D, -2k, z—1

d) 24 — 523 4 92t — Tz + 2, w’+‘5m—2 %% — 3¢+ 2
&) @—-1¥, @-1, & —’1), z—1

f @+ D w%w_ﬁltfjguhbl %}jxfplig in

N

2. Thie following polynomials gre ’t.he nontrivial elementary divisors of a matrix
whose rank is six. What are 1ts‘mvanant factors?

Q) @—1, @ A\hﬁ @—1, E+D, @+

b) (= —2)4 ($~'- 2, @=-2, =z (@D 2

€) (x — 3),,\ (x — 3)3, {x — 3), 2% x4, x*

Az (B, -2, z—-3), (@=—4), (x — B)

€} Ex\-!'S P, (z + 1), {x — 1), z, x2, z3, 2t
»\fl\” -, @, @-Ir ®, @D, @

§> Find elementary transformations which carry the fellowing matrices into the
form (9).

(@ — 1)® o 0 z? 0 0
a) 0 z—2 o By (0 =z+4-1 ¢ )
0 0 z—1 0 0 -+ 2

x 0 0
c) (0 (z — 1)2 0 )
0 1] z+1
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3. Matric polynomials. Let the elements g,; of an m by # matrix 4 be
in Flz] and let s be a positive integer not less than the degree of any of the
. Then every a;; has s as a virtual degree and we may write

(11 a; = aPz* +allr1 4 . 4 o
for aff in F. Define 4, = (af¥’) and obtain an expression of 4 in the form

(12} flz)y = A+ ... + 4, Q
for m by n matrices A;. Thus f(z) is a polynomial in z of virm{aj"t}egree
§ with m by n matriz coefficients A, and virtual leading coefficient A,
Moreover, we say that f(z) has degree s and leading coefficicné Az if Ag 5 0.

In order to be able to multiply as well as to add our raatrices we shall
henceforth restrict our attention to n-rowed squarenatrices with elements
in Flz] and thus to the set of all polynomials in z with coefficients n-rowed
square matrices having elements in F. Let ug’eall these polynomials -
rowed matrie polynomials. If all the A, in (M))dre zero matrices, the poly-
nomial f(z} is the zero polynomial, and we,'a:ga’in designate it by 0. Evident-
Iy we have w B”él’l‘lli rary,org,in

LemuMa 3. The degree of 1(x) ¥ g\fé( j”fé 70 gregfer%hfan the degree of £(x)
or g{x). Ny

Lemma 4. Let 7(x) have degrée™n and leading coefficient Ay, g(x) have de-
gree m and leading coe_ﬁicigzitmo such that AcBo 7 0. Then the degree of
f(x)g(x) s m + n and theleading coeflicient of £(x)g(x) is A¢Bu.

As in Chapter T we yse Lemma 4 in the derivation of the Division Algo-
rithm for matric pqu‘ndfnials which we state as

Theorem 4, Lep$(X) and g(x) be n-rowed matric polynomials of respective
degrees 3 and\LSuch that the leading coefficient of g(x) iz nonsingular. Then
there exist un’&é polynomials q(x), Q(x), 1(x), R(x) sueh that r(x) and R(x)
have virtugfﬂfdegree t—1and

@307 1) = qme) + () = g + RE) .

Moreover, if 8 < t, then q(x) = Q(x) = 0, while if s = t, then q(x) and
Q(x) have degree s — t.

While the proof is very much the same as that in Theorem 1.1, let us
give it in some detail. We agsume first that s = ¢ and let Ay = 0 and By be
the respective leading coefficients of f(z) and g(z). Then By! exists, and if
g:{x) = A By~ the polynomial fi(z) = f(x) — qi(z)g{z) has virtual de-
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gree s — 1. This implies a finite process by means of which we begin with
a polynomial fi(x) of virtual degree s — ¢ = ¢ and leading coefficient A"
and then form fi(x) = fi(x) — guma{x)glz) of virtual degree s — 7 — 1
for gia(z) = A{By%%* . The process terminates when we obtain an
fi(z) of virtual degree ¢ — 1. Thus we have the first equation of (13) with
g(z) = 0,7(x) = flx) if s < ¢, and otherwise with ¢(z) of degree s — ¢ and
leading coefficient 4,85 and r(z) the f;(x} above. If also f(x) = qo{z)g(r) +
ro(x) for go(z) — g(z} # 0, the degree of this polynomial is & = 0, and its
leading coefficient is g £ 0. Also (4Bg # 0 since By is nonsingular. But
then by Lemma 4 the degree of [go(z) — ¢(@)lg(x) = r(z) — rofds t + A,
whereas its virtual degree is { — 1, a contradietion. This prqv'es\the unique-
ness of g(x) and r(z). The existence and uniqueness of £} and R(z) is
proved in exaetly the same way except that we begin by forming f{z) —
9(z) Byt Ao, O

Let us regard the first equation of (13) as theXxdght division of f(z) by
g(x), the second as the Ieft division of f(x) b};iy}i). Then we shall speak
correspondingly of g(z) and r(x) as right guotient and remainder, of Q(z)
and R(x) as lefi quolient and remaindgIf r(x) = 0, we have flx) =
glx)g(z), and g(x) is a right divisor gfff(x")‘ Similarly, we call ¢g(x) a lgft
dipisor of g(z) if f{z) = g[ﬂé{)Q(.’B?, s_gri;ﬁaq E(x) = 0in (13).

It is natural now t‘b"%}"’y tho aﬁ'é&’r‘é@g ﬁle%?nder Theorem for matric poly-
nomials. However, the theorgta in usual form is ambiguous sinee, for ex-
ample, if €' is an n-rowed gqbare matrix and f(z) = Awx? = 224, = 74z,
_ the polynomial f(C) might, ean any one of 4,C% C24,, (.A4C, and these
matrices might all be different. Thus we must first define what we shall
mean by f(C). We, shall do this and obtain a Remainder Theorem which we
state as P\

Theorem, §. ) Let £(x) be an n-rowed square matric polynomial (12), C be
on n-rowed sqiare matriz with elements in F. Define fr(C) (read: fright of C),
and f;@)"(read: £ left of C) by

(4 fR(C) = AsC* + AC*1 4 . . 1A, CHA,,
and
(15) f1.(C) = CoAo +C"1A, 4. .. +CA, 1+ A, .

Then the right and left remainders on division of 1(x) by xI — C are fR(C)
and 11(C), respectively.
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To make our proof as in the case of polynomials with coefficicnts in a
field we use Theorem 4 with g(z) = I — € and have f(z) = ¢{z)g(x) +
r(x} wheve g{x) has degree s — 1 and r(#) = B has elements in ¥, We then
wish to draw our conelusion from fz(C) = ¢r(C}C ~ C) 4 B, This state-
ment is correet, but let us examine it more closely. We write ¢z} =
Cot=t + ... -+ €. and have

h(z} = qlz)(zl ~ C) D
= (Ot + Cixt 4 ..+ Cox) — (Gl .+ GO0 .
e \
Then, if I} is any n-rowed square matrix with elements in F, welig,\\ré

he(D) = CoD* + (€1 = CC)D= + . .. + (ot — CouilID — CC,
while \\

(D)(DI — C) = GoD* + (C1D*1 — CoDG)E . . .
G oD — CosDC) = i€,

and these matrices are equal in gendt8k* LAY BTRF P8 € are commu-
tative. They arc equal if D = Cpand thus f(s} = h(z) -+ B implies that
Fu(C) = he(C) + B = ga(C)(C.X5C) + B = B. The second part of our
theorem is proved similari \i o

As a consequence of {lie résult just proved we have the Factor Theorem
for matric polwomiais\’“ihich we gtate as

Theorem 6. Thegatric polynomial §(x) has xI — C as @ right divisor of
and only if £2(C) =0 it has xI — C as a left divisor if and only if 1£(C) = 0.

For Theorm%%’ iraplies that, if fz(C) = 0, then in (12) the polynomial
rx) = 0, fe@) = q(z}(zl — C). Conversely, if f(z) = ¢(z)(&l — C), we
have seer('that fp(C) = ga(C)(CI — C) = 0. The results on the left follow
simila¥ly) - :

Our principal use of the result above is precisely what is usually called
the trivial part of Theorem 5, that is, if f(z) has 2 — C as a factor, then
€ is a root of f(z). However, it is nontrivial that fz(C) = 0 and follows
only from the study above where we showed that if D is any square matrix
such that DC = CD, then h(z) = g(z)(@l — ) implies that he(D) =
(D)D) — C).

*E.y.,if ¢(z) = & so that h{z) = 2* — O, then hy(D) = D* — CD, go(D)(D — () =
D — DC 3 D2 — CD unless DC = CD.
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EXERCISES

1. Express the following matrices as polynomials f(z) and g(x) with matric coeffi-
cients and compute ¢(z), @z}, »(z), R{x) of (13}.

w48 +1 334+ —1 {22 =1 aF
CL) f(z)= 2I3+$2 +2 4$3+2$+2) ) g() (Sxﬁ 2.32)

b)f(x)=(;:1-i’w2-1xs_1), g(x)=(fzz+x —2:c2+x+1)

241 2%+ 2 2+ 2 O\
b —22 42 —pft a1 1 — g2 '\:’\.
c)f($)=(a:3—x+1 k-2 14z ’ A
z-1 ~l—z a+e-1
m2+2$+a1 2:2—1 2241
9($)=( 1 —my ~N\ 22z 32 —1
2.’,8 w 4 xﬁ+1 xg_i_zx
w\,/
z+2 2041 2 8zt 0,;’\
x D p3  Hyd A\ N

d) f@x) = 93— 1 28+ 3 -2 ’:".‘3

Nos/

#-1 2+1 -2 1Q

2 2t — 22+ 1

W dbrauhbl,ary ofg.in ; 4 “;'3 —_ i: zz i @
A 9'(3) Slopri s 322 1 2
:«} 2 2 —=x 3 )

2. Use f{z) of Ex. 1{e} a}é find f(C?Y and f1.(C) by the use of the division process
as well as by substitptfgn‘if

g1 o 020 1 20
a)C-:"-*\(OUI) b)C=(lD(}) c)C=(2—] 0
\\\wzo-o 001 0 01

4. ’She characteristic matrix and function. If f(z) is a matric polynomial

( ).w1th n-rowed scalar matrix coefficients A;, then we shall call f{z) a
» polynomial. Thus A; == a.f for the a; in F, and

(16) f@) = (@’ + . .. +a)l

where I is the n-rowed identity matrix. We call f(z) smonic if o = 1. It
now g{z) is also & scalar polynomial, the quotients ¢(z) and @¢{z) in (13)
are the same scalar polynomials and also r(z) = R(z) is scalar. For obvi-
ously this case of Theorem 4 is now the result of multiplying all the poly-
nomials of Theorem 1.1 by the n-rowed identity matrix.
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If A is any n-rowed square mafrix, the polynomials fz(4) and f,(4) are
equal for every scalar polynomial f(z), and we shall designate their com-
mon value by

(17) fld) =ade+ ...t aad +ad.

We now say that either the polynomial f(z) or the equation f(z) = Ohas 4
as a root if f{4) = 0. By Theorem 6 the matrix 4 is a root of f{z) if and
only if f(z) has 2z — A as either a right- or a lefi-hand factor. Q)

We shall eall the matrix 2 — A the characleristic matriz of A, the de-
terminant |z] — A| the characteristic determinant of A, the scp.]@'i’p\oly-
nomial \

{18) fy = jaT — A - I

s
2%
< %

R4
the characteristic funcliion of 4, and the corresponding equation f(z) = 0
the characleristic equation of A. We now apply (3:2%)to =I — 4 to obtain

19) @I — A)pdj I — A)] = [adj (&I ~lel — 4)
= |zl ~ 4} - 1.
ww\-.:,ﬂ‘b.l‘hulibrary.org-in
Then the elements of adj (zI — A)care the cofactors of the elements of
ef — A, and adj {2 — A)isa nga,*t:ric polynomial {in general, nonsealar).
By the argument above we haye
Theorem 7. Every square u?}gtriz is a root of ifs characteristic equation.
The g.c.d. of the elementsof adj (zI — A)isclearly the polynomial 12
defined for o/ — A and 453 = |2l — A |. But thenadj (2] —A4) =d,+(2)B(z),
where B(x) is an n-rowed square matrix with elements in Flz]. Hence B {z)
is a matric polyn.,c\siﬁiél. The invariant factors of zI — A were defined in (8),
and by (19) ‘kgl — AT = gr{a)dnar(e)] = (& — A)B(z)d,-a(x). By the
uniquenesg Q‘fﬁuotient in Theorem 4 we have

@) O @) = qi(@)] = (oI — A)B@E).

Hence, clearly, g(4) = 0. Observe also that the g.c.d. of the elements -of
B(z) is unity so that if B(z) = @(z)g(z) for a monic scalar polynomial
. q(z}, then glx) = 1.

We now define the minimum function of a square matrix A to be _the
monic scalar polynomial of least degree with A as @ root. The remark just
made above then implies -

Theotem 8. Let g,(x) be the first invariant factor of the characlerisiic ma-
tric of A. Then g(x) = g:(x)1 25 the minimum Function of A.
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Forif 2(z) is the minimum function of 4 we may write g(z) = h{z)q(z) +
r(z) for sealar polynomials A(x) and r(z) such that the degree of #(x) is less
than that of A(z). But h(4) = 0, and g(4) = Oso that »(4) = 0,r(zx) = 0.
Hence g(x) = h(z)g(z), and sinee g(z) and A(x) are monic so is ¢(x). By
Theorem 6 we have h(z) = (xf — A)Q(z), and by (20) we have ¢g{z) =
(zf — AyQ(z)q(x) = (2 — A)B(x). The uniqueness in Theorem 4 then
states that B(x) = Q{x)¢{x), ¢glz) = 1, from which g(z) = A(z) as desired.

We see now that |z — A| is a monie polynomial of degree » and is not
gero, r = m = g in (9), and O

N

(21) P(z) - (@l — A) - Q@) = diag {gs, . . ., ga] LD
for elementary matrices P(x) and @(z). But then, as we Have already ob-
served in an earlier digeussion, \\
(22) colal — Al -d=g1... 0"
A

for¢ = |P(z)| and d = |Q(x)| in F. Henceled’= 1, and we have proved

Theorem 9. The characieristic function ,oj‘ta xsq'uz.f;r.-“e matriz A is the product
by I of the product of the invariant factord, of the characteristic matriz of A.

This result impliew@haﬂbfﬁilibi‘ﬂiﬁflisgth"e product of gi(z) by divisors
gi{x) of gi(x). It follows that evgr:y’ root of |2 — A| in any field K con-
taining F is a root of gi(z). Bat in fact we have already seen that if F is
the field of all eomplex num{ﬁers, the elementary divisors of 2z — A are
polynomials (x — ¢} Ifosfé product is [zf — A[, Then the ¢; are the
distinet roots of g.(z) as%vell as of {al — A|. They are called the charac-
teristic roots of A. .\“'.".

In closing thjs@fgction we note that if we write f(x) = |of — A| - I =
(z* + @z"! P 0 4 an) I, then f(0) = |—A| - T = (=1)"|A]| - I, 5o that
|A| = (—A)ur,. Tt follows that, if [4] # 0, then

(23) AN A= —qMAM L f @At L ey - D),
and\hence it is obvious that A4~ = 414, Moreover, if |A| = 0, then
A~ does not exist, If, then, 4 0 and g:(z) = 27 + byx=1 -+ ... + bn,
the polynomial g(x) = ¢:{z)}] can be the minimum function of A only if
bm = 0. Since A £ 0, we have m > 1, and ¢ = Am1 + byd™2 4 . .. +
bm—17 I8 & nonzero matrix with the property

(24) AG = GA =0,



POLYNOMIALS WITH MATRIC COEFFICIENTS 103

EXERCISES
1. When is the minimum funection of & matrix linear?

2. What, then, are the minimum functions of the following matrices?

22 6o 96 263

3. Let 4 = diag {4, As} where A; and A; are square matrices of m and n rows
respectively. Show that if f(x) is any polynomial in Flx] and we define f,(z) =
fz}I ¢ for any ¢, then fmya(4) = diag {fu(dy), fn(4:)}. Hint: Prove first by el
tion that A* = diag {AF A}}. O\

4. Tet A have the form of Ex. 3 and let ¢{x)lmyn, ;1(2) 15, and gzg’xﬂ,, be the
respective minimum functions of 4, 4., 4. Prove that g(z) is t};c.:l‘ea'st common
multiple of ¢:(z) and g(x). A\ 3

5. Apply Ex. 4 in the case where A4; Is nonsingular and 4@}\0.
6. Compute the characteristic functions of the following, matrices.

1 2 3 2 {‘}.\1’
o) (2 —1 4 B (2 1
3 11 BP0 —4

0 -1 2 —9 wv,l':t‘bl.:‘é‘ libraigy ore.int

10 3-2y0% (32 1 0
O l_g—3 o 1 D 21-1-2
3 210 -1 0-2—5

7. It may be ghown th: ﬁtf-he characteristic funetion f{x) = 2* — ew™* +
ek (= Bagri 4 LN (—1)%a, of an nrowed square matrix 4 has the
property that e, is the utn"of all s-rowed principal minors of A. Verify this for the
matrices of Ex. 6. ' ,\“

o, &

B. Similasity of square matrices. We have defined two n-rowed square
matrices A.and B with elements in a field F to be simelar in F' if there exists
a nonsiggular matrix P with elements in F such that

A% PAP =B,

The principal result on the similarity of square matrices is then given by
Theorem 10. Two matrices are similar in F of and only +f their charac-
teristic matrices have the same {nvariant factors.
For if PAP'= B, then P(al — A)P' = aPIP' — B =2l — B.
But P has elements in F, | P| # Oisin F, P is elementary. Hence zf — 4
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and zI — B are equivalent in Fiz] and have the same invariant factors,
Conversely, let 2I — A and 2 — B have the same invariant factors, 80 that

(25) Pa)zl — AlQ(z) = zI — B

for elementary matrices P{z) and @(z). We define

(26) P=PyB), Q=B

as in Theorem 5 and have

(@7) P) = GI — B)Pe) + P, Q) = Qula) el — B) 4D,
Then

P@)l(al — HRE) = (oI — B)Pa@)el — A)Q() $D
Pzl —A) . Que)aI —B)+ P-@la A) - Q =2l — B,

Q!

We now use (25) and the fact that P(z) and Q(ﬁ) are clementary to write
[P = Cx), Qx) = D(z) for matrig~polynomials C(z) and D(z)
such that O\

@8) (2] — A)Q(x) = C&) (] ~ B)«;~){”'f;(a;)(:cf — A) = (zI — BYD(x).

wowwr.d braulibl:gry’.org.in

But then from (27) and (28)
Pl - A) = @1 B)D() — Puz)(l — A)]

73

and thus A\
@) (I —B) 5P (el — 4)- Q= (z] ~ B)R(:I ~ B),

AN

where B = E(z)5Pa(z)C(z) + D(z)Qu(z) — Py(z)(zI — A)Qo(z). By Lem-
ma 4 the d é:e.‘in z of the right member of (29) is at Ieast two uniess
R{z) = O.z\ t the degree in x of the left member of (29) is at most one,
R(x) =’?¢,:;
(30.)(\}" Pi(@l —A)-Q=zI-B,
It follows that PAQ = B, PIQ = I, Q = P\, PAP' = B as desired.

Observe that the degree of |2I — A|[ is # and hence that if = is the de-

gree of the <th nontrivial invariant factor g:(z) the property |zl — A| =
gi{x) . . . g.(x) implies that

(31) ittt ... =mn, MEN=...=21 =0,

Ob\_riously, this is an important restriction on the possible degrees of the in-
variant factors of the characteristie matrix of an n-rowed square matrix.
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EXERCISES

1. What are all possible types of invariant factors of the characteristic matrices
of square matrices having 1, 2, 3, or 4 rows?

2. Give the possible elementary divisors of such matrices.

3. Use the proof of Theorem 10 to show that if A, 4,, By, and B» are n-rowed
square matrices such thet A; and By are nonsingular, then 415 4 A and Biz + B,
are equivalent in Flx] if and only if there exist nonsingular matrices P and § with
glaments in F such that PA,Q = B, and P4,Q = B, Hint: Take 4 = —ATIAg,'\
B = —B71B; in (25).

4. Show that the hypothesis that 4, is nonsingular in Ex. 3 is essential by, Rmv’mg
that Aw — I and By — I are equivalent in Flz], yet P and @ do not exist; if

0 1 0 010
A={0 10}, B=[001). O
D0 0 0 0 1/ 00

6. Characteristic matrices with prescribed invanj@f factors. If gi{x),
., ¢:{x) are the nontrivial invariant factors of 4\matrix xf—A and n; is
the degree of g.,(x), then by Theorem 1 the n-rowed square matrix

B = diag {B;, . .2 By}

will be similar in F to A4 if B: is an {5852 RIAre itrik such that the
only pontrivial invariant factor of the characteristic matrix of B; is g.(2).
For then zI — B = diag |zl (> By, ..., zl,, — By} is equivalent in
Flz] to diag (G4, ..., G4, W.Q‘er’e G. = diag {gs, 1,. .., 1}, and we con-
clude that 7 — B hasthe sam}invariant factors as 2] — A. Thus the problem
of constructing an n-rawed'square matrix A whose characteristic matrix has
prescribed invariant f80t01s is completely solved by the result we state as
Theorem 9. Lgt\ghc) =xt — (byx>1+ ...+ ) and

§ 0o 1 o0 ...0

N o 0 1 ... 0

@y O  a={. . . .
N/ 0o 0 ¢ ... 1

bn bn-—]. bn—? (R b]-

Then g(x)1 is both the characteristic and the minimum function of A, g(x) 18
the only nontrivial invariant factor of xI — A.

For
z —1 0 0 0
0 z —1 0 0
(33) 27 — 4 = }
0 0 0 z -1
—ba —buy —ba —b z— b
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The complementary submatrix of the element —b, of (33) is an (n — 1)-
rowed square triangular matrix with diagonal elements all —1 and its de-
terminant is (—1)»% Thus the cofactor of —b, is (=1~ = §
and hence d._1(r) = 1. It remains to prove that d.(z) = |zl — 4 [ = g(x).
This is true if n = 1, since then A = 4, = (b)), and |2] — A} = 5 — p,.
Let it be true for matrices A, of the form (33) and of n — 1 rows, so that
[2] — Aua| = 221 — (52" % + . .. + bay) is the cofactor of the slement
x in the first row and column of (33). We now expand (33) aceordingvto its
first column and obtain |2 — A| = zlz1 — (b2 - . | &)1 —
b, = g{z) as desived. This proves our theorem, O

The construction of square matrices A with complex simber elements
whose characteristic matrices have prescribed elementay divisors has a
simple solution, and we shall see that the argumernt, Qreceding Theorem 9
reduces the solution to the proof of O

Theorem 10. Let ¢ be a complex number, A{éz}hé n-rowed square malrix

P

c 1 0 .00 0
0 ¢ 1. 280 0
(34) A= PN, \ .
WWWL bl'guliar;aﬁ%r_org_.in c 1
0ofe 0 . 0
~\

)
Then the only nonirivial thgariant factor of xI — A 4s (x — ¢)®.

For zI — A is a triangular matrix with diagonal elements all z — ¢,
fal — 4| = (2 —&]%/ The eomplementary minor of the element in the
nth row and firsPe6lumn of 27 — 4 is a triangular matrix with diagonal
elements allouéji}j;; dn1(z) = 1, and d.(z) = (x — ¢) is the only nontrivial
invariant ’fac}nr of A,

Thugdficy, . . ., ¢, are complex numbers and Ry - . ., 724 ATe positive in-
tege{@,{wé construet matriccs A; of the form (34) for ¢ = ¢; and with n;
rows.”The matrix A = diag {4,,..., 4,} then has n rows, and its char-
acteristic matrix I —~ A = diag {By, ..., B.}, where B; = zI,, — A, is
equivalent in #z] to diag {f;, 1, ..., 1} such that f; = (z — ¢c;)". But
then oI — A is equivalent in Flz] to diag ..., f,1,...,1}, and by
Theorem 3 the nontrivial elementary divisors of x — 4 are fy, ..., f: a8
desired.
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EXERCISES

1. Compute the invariant factors and elementary divisors of the characteristic
matrices of the following matrices.
1 -1 -1
N1 0-1
2 -2 -2

-1 -1 1
ay|—-2 5 —1
-1 -1 -1

1 -1 -1 1-1 0 \
e {2 -1 -2 dy (2_ -1 -1 L\
1 1 -1 6 —2 —2 ~A

-4 6 3 g‘g 3 g \
-3 54 N SRR P

803 0-1 1 dAY

N

-2 1 8 -2 -6 {’%ﬁ -19

-1 03 o] 20" 1 5
D 1-1 0-1 25T o0-5

-3 08 0 e-1 2 9

2. ¥ind a matrix B = diag {5, . .y B SHailblipFytergith of the matrices of
Ex. 1, respectively, whore B, has the formi™NS82), and the characteristic function of B;
is the ith nontrivial invariant factgr\ﬁf A,

3. Solve Ex. 2 with the charatberistic function of B; now the ith nontrivial ele-
mentary divisor of 4, B; of j;he rm (34). ’

7. Additional topicg: Phere are many important topics of the theory of
matrices other than'thdse we have discussed, and we leave their exposition
to more advancedtexts. Let us mention some of these topies here, however.

The quanf;iti't% of the field K of all complex numbers have the form

\ c=a+ b (g, bin B, # = -1},

\ N

where R is the ficld of all real numbers, a subfield of K. The complex con-
Jugate of ¢ is

N

c=a—bt,

and the correspondence ¢ «—— & defines a self~equivalence or automorphism
of K, a fact verified in Section 6.9. This automorphism of K leaves the
elements of its subfield R unaltered, that is, & = a for every real a. We
then may call it an aufomorphism over R.
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If 4 is any m by n matrix with elemenis a;; in K, we define A o he the |
i by » matrix whose element in its ith row and jth column is @;;. 1t is then
a simple matter to verify that

AB = AR, Ay = A7, 1 = (),

for every A, B, and nonsingular C. Moreover, then (AR)Y = F°Ad’. We
now define a matrix 4 to he Hermitian if A7 = A, skew-Hermition i —
—A. Two matrices A and B are said to be conjunctive in K if thexe fxists a
nonsingular matrix P with elements in K such that D

'\
% Ny

PAFP =B . !

The results of this theory are almost exactly the SaIng-gs ‘those of the theory
of congruent matrices, and it is, in fact, possible faabtain a gencral theory
including both of the theories above as special.easts,

Two symmetrie matrices A and B with eldnfents in a field # are said io
be orthogonally equivalent in F if there exists/an orthogonal matrix I* with
elements in # such that PAP = B._ But PP’ = 1P = [ so that B =
PAP"is both similar and congruent tmA. Analogously, we call 2 matrix P
with complex e]cme%%ﬁpghl.mﬁﬁ,gg‘ﬁgﬁy = I, a unstary matriz. Then
we say that two Hermitian ppatrices A and B are unitary equivalent if
PAP" = B, where Pisa unifary matrix. Both of these concepts may also
be shown to be speeial ¢asés’of a more general concept.

Finally, let us mentioh the topic of the equivalenee and congruence of
pairs of matrices. Lepd, B, C, D be matrices of the same numbers of rows
and eolumng, Then™we call the pairs A, B and €, B equivalent® pairs if
there exist nq;,@}f_jular seuare matrices P and @ such that simultancously
PAQG = C aad/ PBQ = D. Similarly, if 4, B, €, D are n-rowcd square
matrices, we'call A, B and C, D congruent pairs if simultaneously PAP’ =
C andBBP’ = D for a nonsingular matrix P,

eferences to treatments of the topics mentioned above as well as others
will'be found in the final bibliographical seetion of Chapter VI. We shall
not state any of the results here,

* In this connection see Exs. 3 and 4 of Section 5.



CHAPTER VI
FUNDAMENTAL CONCEPTS

1. Groups. These pages were written in order to bridge the gap between
the intuitive function-theoretic study of algebra, as presented in the usual™
course on the theory of equations, and the abstract approach of the authqr ]
Modern Higher Algebra. The objective of our exposition has now, been at-
tained. For our study of matrices with constant elements led us naturally
to introduce the concepts of field, linear space, correspondence‘ and equiva-
lence, and we are ready now to begin the study of abstrag{\algebra. How-
ever, wc believe it desirable to precede the serious studyef material such
as that of the first two chapters of the Modern Higher'Algebra by a brief
discussion of this subjeet matter, without prﬂof (Gr exercises). We shall
give this discussion here and shall therewith netouly leave our readers with
an acquaintance with the basic concepts of ‘alebraic theory but with a
knowledge of how these concepts may lead into those branches of mathe-
matics called the Theory of N umbmmﬂbﬁh&lﬂ%mwmfgdﬁgebmw Nunbers.

Qur first new concept is that of a8t @ of clements closed with respect
to a single operation, and we wish Mo define the concept that G forms a
group with respect to this opefation. It should he clear that if we do not
state the nature either of th%}lements of @ or of the operation, it will not
matter if we indicate the Operation as multiplication. If we wish later to
consider special sets of\eléments with specified operations we shall then re-
place “product’’ in/ur ‘definition by the operation desired. Thus we shall
make the Q"

DEFINITION: set G of elements &, b, ¢, . . . 45 suid lo form a group with
respect to mulliplication if for every a, b, ¢ of G

L The %’)roduct ab is in G;
II. The associative law a(he) = {ab)c holds;
111, There exist solutions x and y in G of the equaiions

ax:b, ya=b.

The reader is already familiar with the groups (with respect to ordinary
multiplication) of ail nonzero rational mimbers, all nonzero real numbers,
100
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and, indeed, all nonzero elements of any field. These are all examples of
groups ( such that for every a and b of & we have

IV. The producis ab = ba .

Such groups are called commaufative or abelion groups. An example of a
nonabelian (noncommulative) group is the group, with respect to matrix mul-
tiplication, of all nensingular n-rowed square matrices with elements in a
field.

Every group @ contains a unique element ¢ called its zdenal‘y\ element,
such that for every a of G 7N\

Ny

(1) ge =ea=qa. N
R
Moreover, every element ¢ of ¢ has a unigue tnvergg 35t in G such that

@ aa~l = a7la = e N\

W

Then the golutions of the equations of Axiem IH are the unigue elements

(3) x = alb TN {‘ = bg !,

A set H of elemertof %.bgfﬂihb‘ o &’s‘ﬁﬂl’éﬂ 8 subgroup of G if the product
of any two elements of H igdin H, H contains the identity element of @
and the inverse element h{-‘\of every k of H. Then H forms a group with
respect to the same opération as does G,

The equivalence ofMwo groups is defined as an instance of the general
definition of equivalence which we gave in Section 4.5. The concept of
equivalence of'atQm‘ mathematical systems of the same kind as well as the
concept of subsystem {e.g., subgroup of a group, subfield of a field, linear
subspace gver F of a linear space over F) are two concepts of evident funda-
mental importance which are given in algebraic theory whenever any new
mathehla.tlcal system is defined,

Kl’he number of elements in a group G is called its order. This number is
either infinity, and we call G an infinite group; or it is a finite number z, and
we call G a finite group of order n. For finite groups we have the important
result which we shall state without proof.*

Lemwma 1. Let H be a subgroup of a finite group G. Then the order of H
divides the order of G.

A simple example of a finite abelian group is the set of all nth roots of
unity. The reader may verify that an example of & finite nonabelian group

* The proof is given in Chapter VI of my Modern Higher Algebra.
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is given by the quaternion group of order 8 whose elements are the two-
rowed matrices with complex elements, :

) jl " A=(f,_,g), Bz({ljpa)’

|AB, —-I, —~4, —-B, —AB.

The set of all powers
(5) a® = ¢ &, a, 32, a'_'zs e { ( \“’\
of an element ¢ of a group G forms a gubgroup of ¢ which Weghéﬂ'desig-
nate by D
(6) [a} )

and shall call the cyclic group generated by a. Tts ordéglfblé called the order of
the elemeni a and it can be shown that either all the\powers (5) are distinet
and g has infinite order, or @ has finite order %) and [a] consists of the m
distinet powers o

@ e, a, a?,}ﬂ:v{:';;ﬂgt%gmﬂlgrary org.in

where ¢ is the identity element of fa], a™ = e. Then the order m of & ¢s the
least integer + such that at = e{‘Moreover, it can be shown that at = e #f
and only if m divides t. '
The order m of an element of a finite group G divides the order of G,
gince m is the order of :t:h\e subgroup [a], and we may apply Lemms 1, Thus
n = mq, a* = (a")4 & et = e. We therefore have :
LeEMma 2. sz\\é be the identity element of a group G of order n. Then

@) PN an = ¢
for ever}a‘of G.

2. Additive groups. In any field and in the set of all n-rowed square mat-
rices there are two operations. Thus we bave said that the set of all nonzero
elements of a field and the set of all nonsingular n-rowed square matrices _
form multiplicative groups. But the elements of any field, the set of all
m by n matrices with elements in a field, the elements of any linear space,
all form additive groups, that is, groups with respect to the operation ?f
addition as defined for each of these mathematieal systems. The reader will
observe that the axioms for an sdditive abelian group G are those axioms
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for addition which we gave in Section 3.12 for a field. Additive groups are
normally assumed to be abelian, that is, the use of addition to designate the
operation with respeet to which a group & is defined is usually taken to
connote the fact that iz abelian.

The identity element of an additive group is usvally ealled its zero
element, that is, the element 0 such that ¢ +-0 = a = 0 4+ . The in-
verse with respect to addition of @ is designated as —ea and is 5uch that,

e+ (—a) = (—a) + a = (. Thus the solutions of the additive fofptula-
tion O\
(9) ¢tz=b, y+a=b, O

of the equations of our group Axiom IIT are
(10} z=(-e)+b, y=b+G= a}

When ( is abelian, we have z = y and designa‘Q their common value by
b — a. Thus we define the operation of subtmﬁwn in terms of that of addi-
tion.

In a eyelic additive group {a] the elements are always designated by

(11) wxonrﬁibr’aﬁjigt'aﬁz.ﬁré% a) ...,

where, clearly, if m is any pe&itive integer —(m » @) = m - (—a}, and we
define (~m) -a = —(m ;ia}\. Here m - @ does not mean the product of a
by the positive integer\q\iiut means the sum a + ... + o with m sum-
mands. If [¢] is & finite group of order m, the elements of [a] are 0, e, 2a,

., (m — 1) - dpatd m is least positive integer such that the sum of m
summands all eqigaj 16 ¢ is zero. However, if [¢] is infinite, then it may be
seen that 77»\&\: ¢ - a for any integers » and g if and only if » and g are
equal. {

3., Riﬂgs The set consisting of all n-rowed square matriees with elements
in‘afleld 7 is an instance of certain type of mathematical system called a
ring. Many other systems which are known to the reader are rings and we
shall make the

DeriniTioN. A ring is an additive abelian group of at least fwo distinet
elements such lhat, for every a, b, ¢, of R,

I. The product ab is in R;
II. The associative law a(be) = (ab)c holds;
111, The distributive lows a{b + ¢) = ab + ac, (b + c)a = ba + ca hold.
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We leave to the reader the explicit formulation of the definitions of sub-
ring and equivalence of rings. They may be found in the first chapter of the
Modern Higher Algebra. The reader should also verify that all nonmodular
fields are rings, the set of all ordinary integers is a ring.

The zero element of a ring R is its identity element with respect to addi-
tion. Observe that by making the hypothesis that B contains at least two
elements we exclude the mathematical system consisting of zero alone from
the systems we have called rings. N\

Rings may now be seen to be mathematical systems B whose elements
have all the ordinary properties of numbers except that possibly tliéﬁ-od-
ucts ab and ba might be different elements of R, the equationsas = b of
yo = b might not have golutions in B if a # 0, b are in R. {&a’mvg may also
contain divisors of zers, that is, elements a 5 0, ¢ # 0 sueh that ac = 0.
In particular, the ring of all n-rowed square matrices has"‘s;tready heen seen
to have such elements as well as the other properties jist mentioned.

A ring is said to possess a unily element e if €41 R has the property
ea = ae = a for every a of R. The element ¢ thenshas the properties of the
ordinary number 1 and is usually designated\By that symbol. The unity
element of the set of all n-rowed square matrices is the n-rowed identity
matrix, and the unity element w&ﬁ@lﬁpﬁﬁé&hmﬂﬁ@hﬁ%h dn the other rings
we have studied. However, the set ofall two-rowed square matrices of the
form ~

4\

»
0 r
(o o)
with r rational may e?g.;ily be geen to be a ring without a unity element. In
fact, all nonzeroeléments of this ring are divisors of zero.
Aring R is\Q{d to be commutative if ab = ba for every a and b of B. The

ring of all ingegers is a commutative ring, the ring of all n-rowed square mat-
rices @yh'élements in a field F is a noncommutative ring.

(12) A\

4. Abstract fields. If R is any ring, we shall desighate by
R*

the set of all nonzero elements of K. Then we shall call R a division ring if
£2* is g multiplicative group. This oceurs clearly if and only if the equations
ax = b, ya = b have solutions in B* for every ¢ and b of B*. The set of all
n-rowed square matrices is not a division ring. However, let ¢ and d range
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over all complex numbers, ¢ and 4 be the complex conjugate of ¢ and d.
Then the set @ of all two-rowed matrices

(13) A= (Z "g)

is a noncommutative division ring. The reader should verify this, noting
in particular that every 4 = 0 is nonsingular since 4 = ¢ implies that
¢ OQord#=0and |A]| = ct+ dd > 0. The ring Q is a lincar sgate of
order 4 over the field of all real numbers and it hag the matrices I{4;B,AB
of (4) as a basis over that field. It is usually called the ring of'weal quater-
nions, L >

Until the present we have restricted the term “field” tomaan a field con-
taining the field of all rational numbers. We now defing felds in general.

DermiTion. A field is a ring ¥ such that F* i duhultiplicative abelian
group. Y

The identity element of the multiplicativ ’gr\oup F* ig then the unity
. element 1 of F. The whole set ¥ is an additive group with identity element
0, and 1 generates an additive cyclic subgrdup [1]. If this eyelic group has
infinite order, it may be shown to be-&quivalent to the sei, of all ordinary
integers. But F is closed AR YES&EY @3 &dBional operations, and [1] then
generates a subfield of F equivalent*to the field of all rational numbers. We
call all such fields nonmodular felds.

The group [1] might, hgwérer, be a finite group. Its elements arc then
the sums N\

N\

(14) 0-1=0,1,2,...,p—1,

NS
where p is the.fgrﬁér of this group, and we have the property that the sum
14+14. §+ t with p summands is zero. It is easy to show that p is @
prime, and it follows that if ¢ isin F, then the sum @ + @ + . . . -+ a with
p summands is equal to the produet (1 -+ 14 ... 4 1)a = 0. We call
su¢h Kelds F modular fields of characteristic p. It may easily be shown that
the charaeteristic of all subfields of a field F is the same as that of #, and,
in faet, every subfield of F contains the subfield gencrated by the unity ele-
ment of F under rational operations.

5. Integral domains. A commutative ring with a unity element and with-
out divisors of zero is called an infegral domain. Any field forms a somewhat
trivial example of an integral domain. Less trivial examples are the set
Fiz] of all polynomials in z, the set Flz,, . . ., z,] of all polynomials in
1, . « . , %, and coefficients (in both cases) in a field F, the set of all ordinary
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integers. The set of all integers may be extended to the field of all rational
numbers by adjeining quotients a/b, b # 0. In a similar fashion we adjoin
quotients g/b for e and b # 0in J to imbed any integral domain .J in a field.

‘When we studied polynomials in Chapter I we studied questions about
divisibility and greatest common divisor. We may also study such ques-
tions about arbitrary integral domains. Let us then formulate sueh a study.

Let J be an infegral domain and e and b be in J. Then we say that a 1s
divisible by b {or that b divides a) if there exists an element ¢ in J such.that
a = be. H » in J divides its unity element 1, then u« is called a unitof J.
Thus % is a unit of J if it has an inverse in J. The inverse of 2 unjtigclearly
also a unit. O

Two quantities b and b, are said to be assoctaled if each divides the other.
Then b and b, are associated if and only if by = bu for agmit %. Moreover,
if b divides a so does every associate of b. Every unif-0f 7 divides every a
of J. Thus we are led to one of the most important proBIems about an inte-
gral domain, that of determining its units. N

A guantity p of an integral domain J is called &'prime or irreducible quan-
tety of J if p # 0 is not a unit of J and the oplydivisors of p in J are units and
associates of p. Every associate of a prime s a prime. A composile quantity
of J is an @ # 0 which is neither swprimémenhbunityodrd.inlt is natural then
to agk whether or not every compos”}’te'a of J may be written in the form

(15) ;“’&a =P . P

for a finite number of p}i}xes p; of J. We may also ask if it is true that
whenever also ¢ = gy g, for primes ¢;, then necessarily s = 7 and the ¢;
are associates of the'; in some order. When these properties hold we may
call J a unique fatjorization integral domain. The reader is familiar ?vrith th.e
fact that thouset of all ordinary integers is such an integral domain. This
fact, as wcﬁﬁs the corresponding property for the set of all polynomials in
1, . . ooy, with coefficients in a field P are derived in Chapter II of the
author’s’ Modern Higher Algebra.

Thé problem of determining a g.e.d. (greatest common divisor) of two
clements @ and b of a unique factorization domain is solvable in terms of the
factorization of @ and b. However, we saw that in the case of the set Fiz]
the g.c.d. may be found by a Euclidean process. Let us then formulate the
problem regarding g.c.d.’s. We define a g.c.d. of two elements a and & not
both zero of J to be & common divisor € of & and & such that every common
divisor of ¢ and b divides d. Then all g.c.d.’s of ¢ and b are associa'tes. We
call ¢ and b relatively prime if their only common divisors are units of .J,
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that is, they have the unity element of J 25 a g.c.d. We now see that one of
the questions regarding an integral domain J is the question as to whether
every ¢ and b of J have a g.c.d. Moreover, we must ask whether there exist .
z and y in J such that

d = ar + by

is a common divisor and hence a g.e.d. of a and b; and finally whether or not
d may be found by the use of a Euclidean Division Algorithm. ~

6. Ideals and residue class rings. A subset M of a ring R is ealléd an
ideal of R if M contains g — , ag, ga, for every g and  of M dad'd of R.
Then M either consists of zero alone and will be called the zervoideal of R,
or M may be seen to be a subring of R with the property ph%i-ﬁ‘the products
am, ma of any element m of M and any element a of Rare'in M.

If H is any set of elements of a ring R, we may designate by {H} the set
consisting of all finite sums of elements of the fo vrmy for x and y in R,
min H. It is easy to show that {H} is an idedl)Tf H consists of finitcly

many elements m,, . . . , m, of B, we write MY = {my, ..., m},and if I
consists of only onc element m of &, we wEite
(16) www.dbraMbﬁtf&M}“g.in

for the corresponding ideal. This most imporiant type of an ideal is called
a prencipal ideal. It consists oféall finite sums of elements of the form amb
for ¢ and b in R, When R ia}»\commutative ring, M = {m} consists of all
products am for ain R, XN

The ring R itself is 4ndideal of R called the wnit ideal. This term is de-
rived from the fact; that in the case where R has a unity quantity R = {1}.
Evidently {0} is/he'zero ideal.

Let M be a\"l\cféal of R and define

N\

an N a=b (M)
N

(read @ congruent b modulo M) if ¢ — b is in M. We may then define
what We shall call a residue class g of M for every a of £. We put into the
clags every b in B such that ¢ = b (M), Clearly ¢ = b (M) if and only if
b=a(M). Moreover,if a — bisin M and b — ¢ in M, then (a — b) +
(b—¢} =a— cisin M. Tt follows that @ = b (e and b are the same resi-
due class) if and only if b is in .

Let us now define the sum and product of residue classes by
{18) gt+b=a+b, a-b=a-b.
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It may be verified readily that if a; = g, by =b, then @1 + b, = a + b,
@by = ab. It follows that our definitions of sum and product of residue
classes are unique. Then it is easy to show that i M is not B the set of all
the residue classes forms a ring with respect to the operations just defined.
We call this ring the residue class or difference ring R — M (read: R minug
M). When M = R the residue classes are all the zero class, and we have
not celled this set & ring.

When the residue class ring B — M is an integral domain, we call the
ideal M a prime ideal of K. We call M a divisorless idegl of B if R — Mis
a field. These concepts coincide in the case where B — M hag only'a finite
number of elements since it may be shown that any integral dorfain with a
finite namber of elements is a field. This coincidence oceursimizhost of the
topics of mathematics (in particular the Theory of Algebrai¢ Noumbers) where
ideals are studied. o)

7. The ring of ordinary integers. The set of allotdinary integers is a ring
which we shall designate henceforth by E. If-is.easily seen to be an inte-
gral dormain, and we shall prove that it hag'thie property of unique faetori-
zation.

We observe first that the units \ﬂffﬁﬁﬂ?éatﬂ{ﬁeﬂﬁﬁﬁkﬁf? integers u such
that uv = 1 for an integer v. But theh 1 and —1 are the only units of £.
Thug the primes of E are the deiﬁﬁry positive prime integers 2, 3, 5, ete.,
and their associates —2, — 3,5, ete. Every integer ¢ is associated with
its absolute value |a| = Q&‘W&e note now that if b is any integer not zero,
the multiples ™ '

19) 20 101, —fol, 210l 2101, - .
Q

are clearly a\é@%’of integers one of which exceeds* any given integer a.
Then let (g + 1}|6] be the least multiple of 15| which exceeds g so that
glb] <@g -+ 1)|b] > a, a — glb| = rsuch that 0 <7 < |b]. We put
q r-'g‘i‘fb > (), ¢ = —g otherwise, and have g|b| = ¢b,a = bq -I.—.r. If also
@ = bg, + 1y with 0 < r; < [B], then b(g — q) = r1 — r is divisible by b,
whereas |r — ri| < |b|. This is possible only if r, =7 and ¢1 = ¢. We
have thus proved the Division Algorithm for E, a result we state as

Theorem 1. Let a and b 5= 0 be integers. Then there exist unique infegers
qand T such that 0 <t < |b|,8 =bq +T .

We now leave for the reader the application of the Euclidean process,
which we used to prove Theorem L.5, to our present case. The process yields

* We use the concept of magnitude of integers throughout our study of the ring E.
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Theorem 2. Let f and g be nonzero integers. Then there ewist infegers a
and b such that

20 d=af 4+ beg

is a positive divisor of both f and g. Then d is the unigue posiiive g.c.d. of
and g.

The result above implies

Theorem 3. Leff, g, h be integers such that T divides gh and <s primeNe g.
Then f divedes h.

For by Theorem 2 we have af + bg = 1, afh + bgh = h. But by'm’bothems
gh = fg, h = (ah 4 bg)f is divisible byf

We then have N

Theorem 4. Let p be a prime divisor of gh. Then p dévides g or h.

For if p does not divide g, the g.c.d. of p and g is ¢ither 1 or an associate
of p. The latter is impossible, and therefore p is Qnme to g.

We also have

Theorem 5. Let m be an infeger. Then, tlze\set of tntegers prime to m is
closed with respect to muliiplication. C

Forlet @ and b be prime to m and dbethe g.c.d. of aband m. If abisnot
prime to m we have dwwi; ﬁirdrh!,bt’:ﬁ%pmr@nrﬁ if d is prime to a it divides b.
But then a divisorec > 1 of 4 dlwdes @ or b as well as m contrary to hy-
pothesis, o

We may now conclude ogﬂgroof of what is sometimes called the Funda-
mental Theorem of Arithfmetic.

Theorem 6. Every gomposite integer a is expressible in the form

(21) A a=4pi...p:
\00

uniquely ap;}@ }ﬁim the order of the positive prime factors p1, . . ., P
For if a.5 e, every divisor of b or of ¢ is a divisor of &. If a is composite,
it has I{WJSOIS b such that 1 < b < |a|, and there exists a least divisor
% -of a. But then p; is a positive prime, ¢ = pya, for [a| < |a]. I
ﬂe is prime, we write a; = 1 p, with ps & positive prime and have (21) for
r = 2. Otherwise g, is composite and has a prime divisor p. by the proof
above, @; = pea; and a = pipsas for [as] < |ay]. After a finite number of
stages the sequence of decreasing positive integers |a| > las] > [as] >
. ust terminate, and we have (21). Halsoa = 44, . . . g, for positive
primes gy, . . ., ¢, the sign is uniquely determined by a, and p, ... pr =
1. . . 4s. Then either we may arrange the g; so that ¢, = p;, or p1 # ¢
forj = 1,...,s Butif the divisor p;ofg;. .. ¢, is not equal to gy, it does
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not divide ¢: and by Theorem 4 must divide g . . . ¢.. By our hypothesis
it does not divide ¢, and must divide g5 . . . ¢,. This finite process leads to
a contradiction. Thus p; = ¢4, ps. .. Pr= Gz2...Gs and the proof just
completed may be repeated, and we may take p, = g Proceeding simi-
larly, we ultimately obtain r = s, the p; = ¢; for an appropriate ordering*
of the ¢, :

8, The ideals of the ring of integers. Let M be a nonzero ideal of the
set B of all integers and m be the least positive integer in M. Then M “eon-
tains every element gm of the principal ideal {m}. I hisin M K WeNmay
use Theorem 1 to write & = mg < r where 0 < 7 < m. But mg and h are
inM,h— mq = risin M. Our definition of m implies that 1:=‘ 0 and thug
that every element of M isin {m}. We have proved /)

Theorem 7. The ideals of K are principal ideals {m} ,.m'\a\posz't?,'@e integer.

"The residue classes of # modulo {m} are now the ela¥ées

' AY;

(22) 0, 1,...,m—1’.“f\u.\
Ior if ¢ is any integer, we have a=mg-‘f—:*r'f0r*r=0, ,...,m—1
Then ¢ — risin {m}, o = r. Thus the eletents of the residue class ring

www. dbraulibrary . org.in

E 7':" L
defined for m > 1 are given by{22). Then £ — {m} is & ring whose zero
element is the class 0 of all infegeérs divisible by m and whose unity element
is the class 1 of all integgr}\%hose remainder in Theorem 1 on division by
mis X, )

¥ g is an integer prime to m, the elements of the residue class g are all
prime to m. For“t\;ir’\Theorem 2 there exist integers ¢ and d such that

(23) & ac + md =1.

'Ifbisingl,’*ﬁwn b=a- mg be+m(d—ge) =ac+migc+d—go) =
ac +Gnd = 1, and therefore b and m are relatively prime. But g -¢ = 1,
and Theorem 7 implies _

Theorem 8. The residue classes g in B — [m} defined for a prime to m
form a multiplicative abelian group.

If w is a composite integer ¢d where ¢ > 1, d > 1, then m > ¢, m > d,
and ¢ and d are both not the zero elass. But¢-d =¢d =m = 0, B — {m]
has divisors of zero and is not an integral domain. If m is a prime, then

* We may .order the p, so that py < p2 < ... < p, and similarly asgume that ¢ <
@5 ...=¢q,. Thenweobtainr =5, p, —qfori =1,...,n
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every a not in m is prime to m, and Theorem 8 states that E — {m} isa
field. We have proved

Theorem 9. An ideal M of E is ¢ prime ideal +f and only if M = {p} for
a positive prime p, M ts a divisorless rdeal,

We observe now that a = & (M) for M = {m} means that a — b = mg,
that is, @ — b is divisible by m. Thus it is customary in the Theory of Num-
bers to write

N\
(24) a = b (mod m)
A

(read: a congruent b modulo m) if @ — b is divisible by m. But then g = b,
and if we also have ¢ = d, wewﬂlhavea—l—c=b+daswe]l‘ o=
b . d. Hence if (24) and R
{25) ¢ = d {mod m) \\
hold, we have ' N
(26) atc=b+d(modm), as \bd(modm)
Thus the rules (26) for combining congru.ences are equivalent to the defini-
tions of addition and multlghcatmn inE— (mi.

We next state the n¥i{Ber VS0 %ongequence of Theorem 8 and Lem-

ma 2 which is called Euler’s Thearem and which we state as
Theorem 10, Let f{m) be t@e\number of postiive integers not greater than
m > ( and prime fo m. T@@'f a 1s prime fo m we have

(27) (Hat™ =1 (modm).

For f(m) is clea y: the order of the muitiplicative group defined in Theo-
rem 8. Our result, then follows from Lemma 2.

We next h\a}e ‘the Fermat Theorem.

Theorem 1. Let p be a prime. Then

{28) \'“\ ~\ a? = a (mod p)

for every integer a.

For (28) holds if 4 is divisible by p. Otherwise ¢ is prime to p, and 2 is
one of the residue classes 1, 2,...,p — 1. Thus f(p}) = p — 1 and by
Theorem 10 a»-1 — 1 is divisible by p, (gt — 1) = a7 — q is also di-
vigible by p.

The ring E — {p] defined by a positive prime p is a field* P whose

* This field is equivalent to the subfield generated by its unity quantity of any field
of characteristic p.
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nonzero elements form an abelian group P* of order p — 1. The elements
of P* are the distinct roots of the equation z-1 = I and are not all roots
of any equation of lower degree. Then it may be shown that P* is a eyclic
multiplicative group [r} where r is an integer such that 1, rrt ..., 17 %are
a complete set of nonzero residue classes modulo {p}. Such an integer r is
called a primitive rool module p. 'We then have

Theorem 12, Let p be a prime of the form 4n + 1. Then there exists an
integer t such that "\

(29) t24+ 1 =0 (mod p) . O\

"N
FYorp — 1 = 4n, and we let r be a primitive root modulo p, #="r*. Then
=l b~ 1 = (14 1) — 1), 4+ {2 — 1) = 0 in‘the field £ —
{p}. However, 2 = > 5 1 since r is primitive, £ + 1 £ 0'as desired.
There is a number of other results on congruenceswhich are corollaries
of theorems on rings and fields. ITowever, we shall{th mention them here.

9. Quadratic extensions of a field. If F iga’?ﬂbﬂeld of a field K which
is a linear space uF + . . . u.F over F, we gajr that K is a field of degree
n over F. The theory of linear spaces of Chapter I'V implies that %, may be
taken to be any nonzero element, of Bibriemeewe srgyntake w1 to be the
unity element 1 of F. Then if n =3I} the field K is F. We call X a quad-
ratic, cubie, quartie, or quinticfield over F according as n = 2, 3, 4, or 5.

Let n = 2 so that K has ’a,’hﬁsis u; = 1, up over F. The quantities of K
are then uniquely expressible in the form k = ¢, + caus for crand ¢ in F,
and kisin F, k = & - 'Y Ouy, if and only if ¢; = 0. Clearly, if kisin F,
then 1, k do not form,é;"ba,sis of K over F. We now say that a quantity u
in K generates K oyer F if 1, u are a basis of K over F. Then u generates K
over F if and ({agy’if yisnotin F. Forif 1, uare linearly dependent in F we
have a; + agin= O foras # 0, u= —az'a isin F.

The elei:r;iénts % of a quadratic field have the property that 1, k, k? are
linearhy d\ependent in F, cok® + cik + ca = 0 for co, €1, c2 Dot all zero and
in F.NIf ¢o = 0, then ¢, cannot be zero, and k = —ecptisin F, k is a root
of the monie polynomial (z — k)? with coefficients in F. If Xisnot in F,
then ¢¢ # 0, k is a root of a monie polynomial of degree two. Thus every
element k of a quadratic field is a root of an equation

(30) fx, k) = 22— Tk)z -+ Nk) = 0
with T(k) and N(k) in F. In particular, if « generates K over F we have

{31) wt—butec=0
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for b and ¢in F, and we propose to find the value of T'(k) and N (k) as poly-
nomials in &, ¢ and the coordinates k. and ks in F of k = &y -+ ko,
Define a correspondence S on K to K by

(32) k= Tk ks — kS = &y + ko

for all k; and kg in F where %5 is in K. Then (32) is a one-to-cne eorre-
spondence of K and itself if and only if u® generates K over F, ko =
ks + kqu for byand ke in F we have &k = ks - kg, b + ko = (kg WEs) +
(kz + k.;)u, 50 that (k + ko 8= kl + ks + Uiz "‘f" h)us, and we\h&ve

Y

(33) (b + ko) = k5 + k5.

Ny

""'
£ X

Also Ko = Fuks + (bibs + kaka)u + kokau? = (boks — fihic) -+ (ke + Foks
-+ kzkgb)%, while kSkuS = Lks + (k;lkq, + kg?ﬂs)us -+ kg?{f4(us)2. But then,

(34) (ko)™ = Bk \\\
if and only if (%) = buS — ¢, that is, 4 i¥a root in K of the quadratic
equation 2* — bz + ¢ = 0. But the quddratic cquation can have only two

distinet roots in a field K, the sum of the roots is b,
www.dbraulibrary org.in

(35) W =" or b—u.

In the former case §is the i{d}n‘tﬁy correspondence k «<— k. In cither ease
8 defines a self-equivalehee of K leaving the elements of F unaltered and
is called an automorphadm over F of K.

If K were any fleld 6f degree n over F and if S and T were automorphisms
over F of K, wewould define ST as the result k— kST = &%)? of apply-
ing first & —kSand then k% — (&%)T. It is easy to show that the set of all
automorphisms over F of K is a group G with respect to the operation just
deﬁnegl,\«flﬁ case (7 has order equal to the degree n of K over F it is called
the/Galeis group of K over T, and that branch of algebra called the Galois
Theowy is concerned with relative properties of K and . In our prescnt
ease uS = ()5 = b —w)¥ = b — (b — u) = w so that S? is the identity
automorphism. But b — « = w if and only if 2y = b, which is not possible
since © is not in ¥ unless X is a modular field in which u 4+ % = 0. Hence
if K is a nonmodular quadratic field over F, the automorphism group of K
over I is the eyclic group [S] of order 2 and is the (Galois group of K.

We see now that if & = &, + kuu, then k%S = (by + kow)lk: + Lafb —
W] = & + kikab + kuld — u). But bu — u? = ¢. Hence if

(36) TE)=k+ Kk, NGk = k&S,
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we have _
{37) Ty = 2k1 + kb,  N(k) = &2 4 ke + kikab,
and the polynomial of (30} is

(38) Sz, k) = (z — k)= — &%) ..

The function T'(k} is called the trace of k, and N(k) is called the norm of k.
Moreover, we may show that : N

(39) T(ak + k) = TR + TG,  N(bko) = N(k) - Kbl

for every a:and a; of F and k and ko of K. For T{awk 4 asko} = (Q}IE'+ aske) +
(ask + ako)S = ark + asko + a1k + ad§ = ik -+ ks)"f*hs(ku + k3) as
desired. Similarly,* N(kke) = kko(kko)® = kkek§ = (kES}(koks). Note that
if & is in F, then N (k) = k2. ’

Let us now assume that the field K is nonmadp]@:’so that K = ¥ + uF
where u satisfies (31). Then K is also generated by the root w — 3 of the
equation AV :

(40) =4 :’l " (ain F),
ifg=(u—0b/2)?=u—bu-t Wﬁwﬁf@bé%‘ §breryEdtaithen assume with-
out loss of generality that u is a-xoot of (40) so that in (31) we have b = 0,
¢ = —a. 'Fhen (37) has the isi{npﬁﬁed form given by

(41) T(k) X2k, N =k — Ha.

Now if @ = d2 for difiF; we have w? = d, (u + d)(u — d) = 0, whereas u is
not in P and w 483 0, u — d = 0. Thisis impossible in a field.

The quantiti#s'of X now consist of all polynomials in % with coefficients
in F. For if\%)' is any polynomial in Flz], we may write k(z) = k(2 +
Ey(zDz, k() = ki(a) + ka(a)u. Thus every nonmodular quadralic field is the
ring F{\lﬁ?of all polynomials with coefficients in F in an algebraic root u of an
equ&‘ioﬁ %2 = n where a is in F, a 18 not the square root of any quantity of I,
and T is nonmodular. Since K is a field, it is actually the field F(u} of all
rational functions in » with coefficients in F. ) .

Conversely, if the nonmodular field F and the equation 22 = a in F are

given, then K is defined. For we may take

-0 6

* The trace function is thus called a Knear function and the norm function a multiphi-

cative function.
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and identify F with the set of all two-rowed scalar matrices with elements
in ¥ (50 as to make K contain F). Then every polynomial in # has the form
k=k;+k2uandN(k)=k§—-k§a=0ifandonlyifk1=k2=k=0.
For otherwise &, # 0, a = (k,4:%)® contrary to hypothesis. But then we
take K = F + uF and have k7 = (k& — ko) (%, — k) for every k of
K. Hence K is the field P{x). That K is nonmodular is evident since the
unity element of K is that of F. We have thus constructed all quadratie
fields K over a nonmodular field 7 in terms of equations 2 = & Yer ¢ in
F,a £ d*for any d of P, A

Observe in closing that if K = F(u), then K = F(v) foxlevery v = by
such that b 7 0isin F. But » is & root of \,

(43) 22 = bla.

Thus we may replace the defining quantity o in Fby any mulfiple 8% for
b5 0in F. It is also shown easily that if K ig defined by ¢ and K, by a,
then K and K, are fields equivalent over F'\iiﬁnd cnly if gy = bia.

10. Integers of quadratic fields. The)Theory of Algebraic Numbers is
concerned prineipally with the integral domain consisting of the clements
called algebraic infegers iﬁlba ﬁql%{fl'f oi; degree n over the field of all rational
numbers. We shall’disctiss' soméwhit Biefly the case n = 2.

Let, then, K be a quadufitic field over the rational field so that K is
generated by root u of u{~=,\a where ¢ is rational and not a rational square.
By the use of (43) We\éa’y multiply @ by an integer and hence take a inte-
gral. Write ¢ = Jd’where d has no square factor and ¢ and d are ordinary
integers. If we takéd = ¢ in (43) we replace a by d. Hence every quadrat-
ic field is geng@ted by a root u of the quadratic equation

(4:4) k‘ t=q = ipl--.pr,

where the p; are distinet positive primes and r > 1 for @ > 0, while if
{1'-=j =1 we interpret (44) as the case @ negative and r = 0.

The quantities k of K have the form k = k&, + ks where &y and k, are
ordinary rational numbers. We call % an integer of K if the coefficients
Tk}, N(k) of (30) are integers. Thus % is an integer of K if and only if
2k, and kf — kja are both ordinary integers. We shall determine all integers
of K stating our final results as

Theorem 13. The infegers of o quadratic field K form an integral domain J
contarning the ring E of all ordinary integers. Then J consists of all linear
combingtions

(45) ¢ -+ Cow
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for ey and ca in B, where w = uif a = 2 (mod 4) or 8 = 3 (mod 4) but

14
T2

(46)

ifa =1 (mod 4).
Note that a £ 0 {mod 4) since a hag no square factor. We write

by

N bg k = b] —+" bgu ™\
by’

h = B =g b \
oA\
for by, b1, by in K and by the positive least common demmjnatorb? ki and k.
Then 1 is the g.c.d. of by, by, bs. Now 2k, is an integery "By divides 2y,
i — kia = by*(b} — bia), so that b divides b} — bla. If p'were an odd prime
factor of &y, it would divide 2b; only if it divided-bg." %ut then p? would
divide b2, and p* would divide B} — bla as well as =bh%a. Since a has no
square factors this is possible only if p dlwde&bz, 2 contradiction. Hence
by is & power of 2. If by > 4 divides 2b,, them2.divides by, 4 divides b? and
—b3a, and thus 2 divides b, Wehavea cotitradiction and have proved that
Cbo=1,2. If b = 2 and b is even, then 4 divides —k2a, and hence 2

divides b, contrary to the deBiitoHRET B SRy if b, were even, then
4 would divide 53, a contradietiop: ‘Hence b; = 2m, + 1, bs = 2my + 1 for
ordinary integers m, and m,, and B2 — bla = 4lmi + my — a(md + my)] +
1 — ais divisible by 4 if a.nd\only if @ = 1 (mod 4), Thus we have proved
that J consists of the ¢ ments (45) with w = u if ¢ = 2, 3 (mod 4). But
if @ = 1 (mod 4), thén_we have shown that either k = &, + byu with b,
and by in E, by = 1 Y k = m1 + mau + w for w in (46). However, u =
2w — 1, and in gither case k has the form (45) with ¢; and ¢, in E.

It remains, toc}]ow that J is an integral domain. The elements of J are
in the field 1§“and thus it suffices to show that k& 4 h, kA are in J for every
k and h of . But the sum of & and k of the form (45) is clearly of that

form, the product
\ ' (c1 + caw){dy + doaw) = e1dy -+ (erds + codr}w + cadar®

is of the form (45) if w? ig of that form. But this condition holds since if
w = u then w* = a + O, while otherwise 4 = & = 4m +- 1 for an inte-
germ, T(w) =3+ %= 1, N(w) =il—-a) = —m,wt—w—m=0,

(47) w=m+w.

This completes the proof.
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The units of J are elements & such that k2 =1 for & also in J. Then
N(Eh) = N(E)N(R) = 1, N(k) is an ordinary integer which divides unity,

(48) : NE) = +1.

Conversely, if (48) holds, k has the property kk°* = 1 or —1. But kS ig in
J when kis in J since T(k%) = T(k) and N(&%) = N(k). Hence k% = k' or
—kS = k-1, Thus (48) is a necessary and sufficient condition that k& be a
unit of .J.

If 2 = 2, 3 (;mod 4) so that & = €1 + esu, then (48) is equivalentto

(49) A —ca=+1, O\

e A N
However, if ¢ = 1 {mod 4), then (48} becomes N{k) = gi}.:l—"c;\t:g — om =
+1 so that AN(k) = 4¢% 4 dereqg + 2 — @m + 1)ed ffié. But this is
equivalent to ' \‘

(50) (2cs + €2)? — g = L4\
7%\

We may determine the units of J compﬁ}tély and simply in case @ is
negative. For both (49} and (50) bavesthe form =z} 4- 22g = £1, 4 for
g = —a > 0, and this is possible for ordinary integers z, and z, and g > 4
onlyif z, = 0, ¢, = 1, %ﬁavlélbﬁﬁgg 10 Bgdare factors, and hence g = 4,
the only possible remaining cages\are g = 1, 2, 3. If g = 2 we have =} +
223 = 1only if z; = 0. Hencewe have proved that the units of J arc 1, —1
for every a4 < 0 save only.a= —1, —3.

Nowleta = —1s0 Q@t@g) becomes ¢t + ¢ = 1. Then one of ¢y and ¢,
is zero, the other is hor*—1, and the units of J are

{61) P\ % 1, #, —u, w? = —1,

K3
In the rem{‘iﬁiﬁg case ¢ = —3 we use (50) and have (2¢; + ¢2)2 + 3¢k =
4, and iy ¥ 0 we must have ¢, = +1, 2¢; + ¢, = + 1 with any choice

of signé;" Ther ¢ = 1 gives ¢, = 0 or —1, while ez = —1 gives 0 or 1
f&r"c{p ‘Clearly, the units of .J are
(52) 1, =1, w, —w, ws, —w.

The units of J form a multiplicative group, and we have shown that if a is
negative this group is a finite group,

Ifa=2 thenh =34 2uhasnorm 9 — 4u2 = 0 — 8 = 1, Henee k is
a unit of J, and sois & for every integer . If it = &’ for s £ {, we may take
¢ > sand have A** = 1. But we may regard u as the ordinary positive V2
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and have h > 5, h*~* > 5 > 1. Hence the multiplicative group of the
units of J is an infinite group. It may similarly be shown lo be infintie for
every posilive a.

We shall not study the units of quadratic fields further but shall pass on
to some results on primes and prime ideals in two special cases.

11. Gauss numbers. The complex numbers of the form z 4 yi with ra-
tional z and y are called the Gauss complex numbers, and those for which
z and y are integers are called the Gauss infegers. Then the Gauss complex
numbers are the elements of a quadratic field X of our study with \

ne
= -1, N
and the Gauss integers comprise its integral domain J. ﬁe"}laﬂe deter-
mined the units 1, J-u of J and shall now study its diw}il\)ﬂity properties.
Our first result is the Division Algorithm which we state as
Theorem 14, Leifand g % 0 bein J. Then there’exist elements h and r

in J such that ~ A
(53) | f=gh+r0
and 0 < N@r) < N(g) wwvi'_glbraulibl'ary.ot'g.in

Tor fgtisin K, fg' = k1 + kaa with rational &, and k,. Every rational
number ¢ lies in an interval s,< t'< s+ 1 for an ordinary integer s. If-
$ <t <s+ % then (£~ s)S3 while if s +4 <f<s+ 1 then |t —
(s4+ 1)| < % Hence the@xist ordinary integers k; and ks such that

B4 si=ki—hi,On=k—h, |ul<}, lsl<%.
AS
Put & = h1+hm)is'= 81+ s, r = sg g0 that fg ' =h {8 f=gh+
sg = gh 4 r. Thett N{s) = s + s} < }, N(r) = N(N(g) < N{g) as de-
gired. ,(\\" _ ‘
We obsérve that the quotient k and the remainder r need not be unigue in
our Sent case. For example, if f =2+ v and g =1 + u, we have
N2 Thenf=1-g4+1=2-g—uwith N1} = N(—w) =1
We shall use the Division Algorithm to prove the existence of a g.e.d.
Our proof will be different and simpler than that we gave in the case of
polynomials and indicated in the case of integers but has the defect of being
merely existential and not constructive. We first prove
Theorem 15. Every tdeal M of J is a principal ideal. o
Tor the norms of the nonzero elements of M are positive Integers, and

there exists an m % 0 in M such that N(m) < N(f) for every fof M. By
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Theorem 14 we have f = mh + r for h and r in J and N{r) < N(m). But
Jymand mh are in M, so is r = f — mh, and it follows that » must be zero,
Thus f = mh, M = {m}.

The ahove result then implies

Theorem 18. Letf and g be nonzero elements of J. Then there exist b and ¢
in J such that

(55) d =bf + g ~

N

i8 @ common divisor of f and g. Thus d 45 ¢ g.c.d. of f and g, K

For the set of all elements of the form zf + yg with z and/nin"7 is an
ideal M of J. By Theorem 15 we have M = {d},din M hg,s:;cfie form (55)
and divides f =1-f4-0g,andg =0-f+ 1-gin M.

The above result may now be seen to imply-that 'if}'j,"divides gh and is
prime to g, then f divides &, and also if p is a primeof.¥ dividing gh, then p
divides g or k. Moreover, if f is a composite integer of J, then f = gk for
nonunit ¢ and £z, N{g) < N{f). Then if p is afsﬂimsor of f of least positive
nerm it is a prime divisor of f, and we cohlinte the proof of Theorem 6
to obtain R

Theorem 17. Every composite Gaussinteger is expressible as a product

www_dbraulibj*ary.OI'g.in

(56) f =Pi...P

of primes p: which are defermned uniquely by f apart from their order and
untt multipliers. \\ o

We observe that Thebrem 17 implies thet an ideal M of J is & prime idcal
(and, in fact, a divigerless ideal) if and only if M = {d} for a prime d of J.
Let us then deteljr@ne the prime quantities d = d; + dgu of J. We see first
that if d is a primeof J, sois d¥ = d; — dyu. Forif d% = gh with N{g) = 1,
N(h) = 1, wethiave d = ¢5h5 for N{g5) = N(g), N(&%) = N(%), and d is
compositer’We now prove

Thgorém 18. A positive prime p of E is either a prime of J or the product
N(d\= dd®, where d is a prime of J. Every prime d of J 1s either associated
with @ positive prime of E or arises from the factorization tn J of @ posttive
prime p = dd® of E which 1s composite in J.

For if p is a positive prime of E and is eomposite in J, then p = dk for
N{d) > 1,N&) > 1, N(p) = p* = N(@NK). But thenp = N({d). If d =
gh with N(g) > 1, then N(d) = p = N(g)N(k) so that N(h) = 1, h is a
unit, 4 is a prime. Conversely, let d be a prime of J. Then ¢ = N(d) is 2
positive integer of & and is either a prime or is composite. But ¢ = dd® can
have at most two prime factors in E, ¢ = Ppo for positive primes p and po
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of E. We may assume that p is associated with d and Po with d% g0 that
p§ = po is associated with d and with p. Since p and o ate both in E, we
have py = & p. But p and po are positive and must be equal, N(d) = P
Therefore d is associated with the prime p of E which is prime in J.

We now clearly complete our study of the primes of J by proving

Theorem 19. A positive prime p of E is a prime of J if and only if p has -
the form 4m + 3.

To prove this result we observe first that if ¢ is an odd integer of E se
have{ = 25 +1,## =48+ 4s+ 1 =4s(s + 1) + 1. One of s and s 31
is even, 2 = 8r + 1 =1 (mod 8). If ¢ is even, we have # = 0 (med 4)
and £ = 0, 4 (mod 8). Thus a sum of two squares is congruent ,toﬁ, 1,2,4,
or & modulo 8 while 4n 4 3 is congruent 3 or 7 modulo &, Tt fellows that
p = 4n + 3 # 2* + 3. We now assume that p = gh forg @hd 4 in J and
have p* = N{p} = N{gN(h). If neither ¢ nor & wer¥ 3 unit, we would
have N(g) > 1, and both of these integers would\be divisors of 2. But
then N(g) = N(k) = p = z® + ¢, which is impogdible. Hence, p = 4n + 3
is prime in J. We note that 2 = 1 4+ 1 = (@ )(1 — w) is composite in
J and that it remains to show that p = 4n + Jis composite in J. We know
by Theorem 12 that there exists an integer¥in E such that 52 -+ 1is divisible
by p. If p divides b + w or b — %" ihéPPUr =TGP kov), and £1 =
pks, which is impossible. But a prime p of J eannot divide the product
b+t —u)=0804+1 with%lt dividing one of its factors b 4 u, b — w,
Hence p is not a prime of J. o\‘f[‘his completes the proof.

We use the result a,bovp\ﬁs derive an interesting theorem of the Theory of
Numbers. We call a_pesitive integer ¢ a sum of two squares if ¢ = z* + y?
for x and y in E. Then"we have

Theorem 20. Weite ¢ = fig where { and g are positive integers and g has
no square factorse-Then ¢ is @ sum of fwo squares if and only +f no prime factor
of g has the, fﬁrm 4n -+ 3.

For_if“¢'= 2 42 = (z + yu){x — yu), we may write x +yu = dy
- d,ff\ér"primes diin J, ¢ = N(di) . .. N({d,). Then N(d;) = p:isa pr%me
of E if and only if p; % 4n + 3 and otherwise N(d:) = p}. Thus the prime
factors of ¢ of the form 4n 4 3 occur to even powers and are not factors of g.
Conversely, if g = p; . . . p.for positive primes p;of £ not of the form 4n +
3, we have p; = N(d;) for diin J, ¢ = N{d1) .. . N(d, e N(di.. . do),
and ¢ = N(fdy ... d,) = N(k) = 2 + gfork =z +yuinJ.

Note in closing that a positive prime p of the form 4n -+ 3 divides 32_ + ¥
if and only if p divides both 2 and y. For p is a prime of J and divides
(@ + yu)(@ — yu) if and only if p divides either © -+ yu or z — yu. Then
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z t yu = plky + k), x = phy, y = pks for integers k, and &, of E. It
follows, then, that if #, y, z are ordinary integers such that

(57} z2 Yt =2,

every prime divisor p = 4n + 3 of z divides both z and y. Then lot z, ¥, %,
have g.c.d. unity. It follows that the odd prime divisors of z have the form
4n + 1. We may show readily also that z and y cannot both be even oT be
odd and that z must be odd.* \

12. An integral domain with nonprincipal ideals. We shall olose Gur ex.
position with a discussion of some properties of the ring J ‘of Integers of
the field K defined by @ = % = —5. Since —5 = 3 (mod.4), the clements
of J have the form k; 4 kyu for &, and k&, in the set E éf‘all integers. Ob-
serve that if b is an integer of E which is a divizor in Juof k1 4 kou, then b
must divide both %; and k.. For k1 + kyu = blhat hau), by = bhy, Ky =
bks. We now prove \\

Theorem 22. The elements 3, 7, 1 + 2u, ¥ >"2u are primes of J no two
of which are associaled, S '

For if k is a composite of J we have gt gh, N(k) = N(g)N (h) for ordi-
nary integral proper diyisara¥d{ghads, M)inof N(&). The norms of the
integers of our theorem are 9, 49, 3} 21, respectively, and the only positive
proper divisors of these normd are 3, 7. But if ¢ = g1+ gau, we have
N(g) = gt + 5g5 > 0, g} + 5= 3,7. Evidently g, = 0, g3 < 1. Butgl =1
is impossible since gf 7 ~*2\2. Thus 3, 7, 1 + 2u, 1 — 2u are primes of J.
The units of .J are 1, <1yand clearly no two of them are associated.

We see now that@{/= 3+ 7 = (1 -+ 2u)(t — 2u), and we have factored
21 into prime factord in J in two distinet ways. Moreover, the principal
ideal {3} of J défitied for the prime 3 is not a prime ideal. ¥or 3 does not
divide 1 - 2u§nd I — 2uin J yet does divide their product, and therefore
the resid}ie elass ring J — {3} contains 1 4 2u and 1 — 21 as divisors of
zero. L)

The i‘ing J contains nonprineipal ideals one of which we shall exhibit,
We let M be the ideal of J consisting of all elements of J of the form

(58) 3z + y(1 + 2uw) (z,yin J).

If this ideal were a principal ideal {d}, there would exist a common divigor
dof 3 and 1 + 2u. Since these are nonassociated primes, d must be a unit.

* For further results see L. B. Dickson’s F ntraduction to the Theory of N umbers, pp.
40-42,
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tor —1of J, and {d} = {1}. Then 1 = 3p - (t + 2wcforband cin J
7T =210+ (1 + 2u)Te = (1 + 201 — 2u) + 7c]. But 1 + 2y does noiz
divide 7, a contradiction. We now proceed to prove that A is & divisorless
ideal of J and hence i3 & prime ideal of .J.

We have shown that M is not a principal ideal and does not contain 1.
Since M contains 3 but not 1 it cannot contain 2. For otherwise § — 9 = 1
would be in M. Let ¢ be an integer of E in M so that ¢ = 3¢ + r where
r=0,1, 2. Since M contains 3¢ it contains ¢ — 3¢ = r, r = 0.- Hence

the ordinary integers in M are divisible by 3. A
The ideal M contains 3 and 1 -+ 2 and so eontains L D
(59) w =3, wz=3u—(1—f—2u)=u—1(~:;'

If hisin M, then h = ho + hou for Ao and hs in Bk haws = by + ke in
E and in M. By the proof above A + ks = 3R, fork; in B,

(60) h = s + a4

We have thus proved that M consists of @l} quantities of the form (60} for
ki and k. ordinary integers. Thus wemay call w;, ws a basis of M over E.
Note that {1} has a basis 1, « overpl] i Hhig ey be shown that
every idecal of J has a basis of tworelements oﬁ:ﬁ.

Every integer of J has theform & = k1 + ko = ki 4 kaws + ke Write
ki + ks = 8¢ +rforcin Bandr = 0,1,2 Thenk = cwy + kowy +7 =
7 (M), the elements of J& I are the residue clasees 0,1,2suchthat 3 = 0.
We have proved that"{ — M is equivalent to £ — {3} and is a field, M is
a divisorless ideal 6f:J.

This co p}e;be\s our diseussion of ideals and of quadratic fields. We shall
conelude gurstext with the following brief bibliographical summary.

Let ysbegin with references to standard topies on matrices not covered
in guintroductory exposition. The theory of orthogonal and unitary equiv-
alénce of symmetric matrices is contained with generalizations in Chapter V
of the Modern Higher Algebra and is further generalized and connected with
the theory of equivalence of pairs of matrices in the author's paper entitled
“Symmetric and Alternate Matrices in an Arbitrary Field,” in Transactions
of the American Mathematical Society, XLILI (1938), 386-436. See also pages
74-76 and Chapter VI of L. E. Dickson's Modern Algebraic Theories, and
Chapter VI of J. M. H. Wedderburn’s Lectures on Matrices. Both of these
texts as well as Chapters II1, IV, and V of the Modern Higher Algebra in-
elude, of course, all the material of our Chapters II-V. For a discussion
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without details but with complete refercnces of many other topics on ma-
trices see C. C. MacDuffee, The Theory of Matrices (*Ergebnisse der Mathe-
matik und ihrer Grenzgebiete,” Vol. 11, No. 5 [pp. 110]).

The theory of rings as given here is contained in the detailed diseussion
of Chapters I and I of the Modern H- tgher Algebra, and the theory of ideals
in Chapter XI. See also the much more extensive treatment in Van der
Waerden’s Moderne Algebra. The units of the ring of integers of a quadratic
field are discussed on page 233 of R.. Fricke’s Algebra, Volume IIT; aod itg
ideals on pages 106-10 of H. Hecke’s Theorie der algebriischen Zahlen. We
close with a reference to the only reeent book in English on a{gnqb}'&ic num-
ber theory, H. Weyl’s Algebraic Theory of Numbers (Princetort; 1940).
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Element—continued

unity, 113

zero, 112, 113
Elementary:
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Polynomials—eontinued Rational ;
products of, 3 equivalence, 25
g-ary, 13 functions, 8
rationally irreducible, 12 operations, §
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roots of, 5 quadratie form, 62
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in several variables, 6 symmetric matrix, 64
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Principal diagonal, 23 theorermn, 4,,9&\31“.

id:

Quadratic field, 121 Ehihtugi:i:ffz;?}QSIG
integers of, 124 Ring, 112)

Qua'd““fic form, 54 com}nutatlve, 113
.deﬁm‘rre, 64 erence, 117
index of, 62 O ’divisiun, 113
negative, 64 R\ " residue class, 117
nonsingular, 55 \ Roots, 5
real, 62 dbrauhhrary anglfiple, 5

Quadratic forms, equwa,Ient 59 A\ Rotation of axes, 87

Quantities: Ve Row, 69
agsociated, 115 A\ rank, 72
composite, 115 (\J space, 69, 72
congruent, 6, 11 ¥ Row by column rule, 37
irreducible, 115 ¢
prime, 115 )" Scalar:
relatively prime) 115 matrix, 30

Quartic field121 polynomial, 100

Quartic forny13 product, 16, 41

Quasi-field, 57 Scalars, 19

Quaternﬁry form, 13 Belf-equivalence, 107

Quaternions, 114 Semidefinite forms, matrices, 64

Qui‘hary form, 13 Sequence:

Quotient, 57 elements of, 16
right, left, 98 zero, 16

Similar matrices, 85, 103

Rank of: Skew forms, 53
sn adjoint matrix, 46 Bleew matrices, 52
a bilinear form, 49 Space; see Linear apace
a matrix, 32 Spanning a space, 67
a product, 44 Subfield, subgreup, 110
& gquadratic form, 54 Submatrix, 21

a rOw space, 72 complementary, 21



Subring, 113

Subspaces, 86, 75, 77
complementary, 77
sum of, 77

Subsystemns, 110

Subtraction, 112

Symmetric bilinear forms, 54

Symmetric matrices, 52, 53
congruence of, 59 .
definiteness of, 64

Ternary forms, 13
Trace, 123
Transformations, 84
Transpose, 22

INDEX
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Unit ideal, 116
Units, 115
Unity element, 113

Variables, change of, 38
Vectors, 66

linearly independent, 67

norm of, 86

orthogonal, 87

zero, 66 '*(\
Virtual degree, 2, 8, 97 .
Virtual leading coefficient, 3, 970\{\

@)

o

Zero: « \
divisors of, 113 <.3g ’
element, 112, 113 /N ¢

v

of a product, 37 ideal, 116 ) &
of a sum, 62 matrix, 30 \‘\\")
polynomial, 3
Una.ry fOI'IIl, 13 geque]]_c’es
Unique factorization, 115, 118, 127 spaqg,.@({’
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